题目链接

定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍。

      ——信息学奥赛之数学一本通

避免侵权。哈哈。

两只青蛙跳到一格才行,所以说

\(x+mt=y+nt(mod l) \)

\((x-y)+(m-n)t=0(mod l)\)

\((m-n)t+ls=(y-x)  s属于整数集\)

令a=n-m,b=l,c=gcd(a,b),d=x-y

则有\( at+bs=d\)

扩展欧几里得求解。

设c=gcd(a,b),若d/c 不是整数则无解。

最小解=(c*(d/c)%b+b)%b

这里是扩展欧几里得的代码。

long long exgcd(long long a,long long b,long long &x,long long &y){
if(b==){
y=;x=;
return a;
}
long long ret=exgcd(b,a%b,x,y);
long long tmp=x;x=y;y=tmp-a/b*y;
return ret;
}

扩展欧几里得

附上解题代码

#include<iostream>
#include<cstdio>
using namespace std; long long p,q; long long exgcd(long long a,long long b,long long &x,long long &y){
if(b==){
y=;x=;
return a;
}
long long ret=exgcd(b,a%b,x,y);
long long tmp=x;x=y;y=tmp-a/b*y;
return ret;
} int main(){
long long n,m,x,y,l;
cin>>x>>y>>m>>n>>l;
long long a=x-y,b=n-m;
if(b<){
b=-b;a=-a;
}
long long c;
if((a)%(c=exgcd(b,l,p,q))){
printf("Impossible");
return ;
}
printf("%lld",((a)/c*p%(l/c)+(l/c))%(l/c));
return ;
}

【Luogu】P1516青蛙的约会(线性同余方程,扩展欧几里得)的更多相关文章

  1. luogu P1516 青蛙的约会(线性同余方程扩展欧几里德)

    题意 题解 做了这道题,发现扩欧快忘了. 根据题意可以很快地列出线性同余方程. 设跳了k次 x+mkΞy+nk(mod l) (m-n)kΞ-(x-y)(mod l) 然后化一下 (m-n)k+(x- ...

  2. 青蛙的约会(exgcd/扩展欧几里得)

    题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清 ...

  3. 解题报告:luogu P1516 青蛙的约会

    题目链接:P1516 青蛙的约会 考察拓欧与推式子\(qwq\). 题意翻译? 求满足 \[\begin{cases}md+x\equiv t\pmod{l}\\nd+y\equiv t\pmod{l ...

  4. [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)

    最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...

  5. POJ 1061 BZOJ 1477 Luogu P1516 青蛙的约会 (扩展欧几里得算法)

    手动博客搬家: 本文发表于20180226 23:35:26, 原地址https://blog.csdn.net/suncongbo/article/details/79382991 题目链接: (p ...

  6. [Luogu P1516]青蛙的约会

    按照题意,显然可以列出同余方程,k即为所求天数,再将其化为不定方程 ,那么对这个方程用扩展欧几里德算法即可得出k,q的一组解,但是方程有解的充要条件是(m – n) 和L不同时为零并且x – y是m ...

  7. luogu P1082 同余方程 |扩展欧几里得

    题目描述 求关于 x的同余方程 ax≡1(modb) 的最小正整数解. 输入格式 一行,包含两个正整数 a,ba,b,用一个空格隔开. 输出格式 一个正整数 x,即最小正整数解.输入数据保证一定有解. ...

  8. luogu1082 [NOIp2012]同余方程 (扩展欧几里得)

    由于保证有解,所以1%gcd(x,y)=0,所以gcd(x,y)=1,直接做就行了 #include<bits/stdc++.h> #define pa pair<int,int&g ...

  9. Poj 1061 青蛙的约会(扩展欧几里得解线性同余式)

    一.Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要 ...

随机推荐

  1. printf 遇到bash重定向

    在printf之前添加:setvbuf(stdout,NULL,_IONBF,0);设置缓冲区为空. 在每句printf之后添加:fflush(stdout); 方法一: 1 2 3 4 5 6 7 ...

  2. POJ 3140 Contestants Division (树形DP,简单)

    题意: 有n个城市,构成一棵树,每个城市有v个人,要求断开树上的一条边,使得两个连通分量中的人数之差最小.问差的绝对值.(注意本题的M是没有用的,因为所给的必定是一棵树,边数M必定是n-1) 思路: ...

  3. C# 重写(override)和覆盖(new)

    重写 用关键字 virtual 修饰的方法,叫虚方法.可以在子类中用override 声明同名的方法,这叫“重写”.相应的没有用virtual修饰的方法,我们叫它实方法.重写会改变父类方法的功能.   ...

  4. python之路——目录

    目录 python基础部分 基础部分 介绍.基本语法.流程控制 列表 元祖 字符串 字典 集合 文件操作 函数 变量 递归 迭代器,生成器,装饰器,Json和pickle 数据序列化 函数 初识函数 ...

  5. webpack之postcss集成

    项目 为了 兼容各个浏览器,需要加各种 c3前缀,如果手动的加肯定 相对比较麻烦,但是现在有webpack,gulp之类的 工具可以自动给我们加上,可以说效率上加速不少.如果 配置中 做个happyp ...

  6. Codeforces Round #275 (Div. 2)-A. Counterexample

    http://codeforces.com/contest/483/problem/A A. Counterexample time limit per test 1 second memory li ...

  7. ueditor1.4.3.all.js报错

    .replace( /<[^>/]+>/g, '' ) 转义符问题! 修改为: .replace( /<[^>\/]+>/g, '' )

  8. $Codeforces\; Round\; 504\; (Div.2)$

    宾馆的\(\rm{wifi}\)也太不好了,蹭的\(ZZC\)的热点才打的比赛(感谢\(ZZC\)) 日常掉rating-- 我现在是个\(\color{green}{pupil}\)-- 因为我菜, ...

  9. LeetCode 买卖股票的最佳时机 II

    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次 ...

  10. 【OS_Linux】Linux系统中目录及文件管理

    1.Linux系统中目录的树状结构 目录 /bin 存放二进制可执行文件(ls,cat,mkdir等),常用命令一般都在这里. /etc 存放系统管理和配置文件 /home 存放所有用户文件的根目录, ...