【BZOJ】1084: [SCOI2005]最大子矩阵(DP)
http://www.lydsy.com/JudgeOnline/problem.php?id=1084
有一个1A~~~
本题没看懂,,不会啊囧。。感觉完全设不了状态。。看了题解,囧,m<=2,没看到的。。默哀吧。然后此题就很好设方程了,m=1时是链,单独考虑,m=2时,考虑几种情况:
m==1时:
设d[i][j]表示前i个元素j个矩阵的最大值,有
d[i][j]=max(d[i-1][j], d[k][j-1]+sum[i]-sum[k], 0<=k<i)
很好理解。。。
m==2时:
设d[i][j][k]表示列1的前i个元素和列2前j个元素k个矩阵的最大值,有:
d[i][j][k]=max(d[i-1][j][k], d[i][j-1][k])
d[i][j][k]=max(d[x][j][k-1]+sum1[i]-sum1[x], 0<=x<i)
d[i][j][k]=max(d[i][x][k-1]+sum2[j]-sum2[x], 0<=x<j)
当i==j时,d[i][j][k]=max(d[x][x][k-1]+sum1[i]-sum1[x]+sum2[j]-sum2[x], 0<=x<i)
#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define read(a) a=getnum()
#define print(a) printf("%d", a)
inline int getnum() { int ret=0; char c; int k=1; for(c=getchar(); c<'0' || c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0' && c<='9'; c=getchar()) ret=ret*10+c-'0'; return ret*k; } const int N=105;
int f[N][N][15], s[N][5], ans, d[N][15]; int main() {
int n=getnum(), m=getnum(), K=getnum();
for1(i, 1, n) for1(j, 1, m) s[i][j]=s[i-1][j]+getnum();
if(m==1) {
for1(i, 1, n) for1(j, 1, K) {
d[i][j]=d[i-1][j];
for1(k, 0, i-1) d[i][j]=max(d[i][j], d[k][j-1]+s[i][1]-s[k][1]);
}
ans=d[n][K];
}
else {
for1(i, 1, n) for1(j, 1, n) for1(k, 1, K) {
f[i][j][k]=max(f[i-1][j][k], f[i][j-1][k]);
for1(l, 0, i-1)
f[i][j][k]=max(f[i][j][k], f[l][j][k-1]+s[i][1]-s[l][1]);
for1(l, 0, j-1)
f[i][j][k]=max(f[i][j][k], f[i][l][k-1]+s[j][2]-s[l][2]);
if(i==j) for1(l, 0, i-1)
f[i][j][k]=max(f[i][j][k], f[l][l][k-1]+s[i][1]-s[l][1]+s[j][2]-s[l][2]);
}
ans=f[n][n][K];
}
print(ans);
return 0;
}
Description
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。
Input
第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。
Output
只有一行为k个子矩阵分值之和最大为多少。
Sample Input
1 -3
2 3
-2 3
Sample Output
HINT
Source
【BZOJ】1084: [SCOI2005]最大子矩阵(DP)的更多相关文章
- BZOJ 1084: [SCOI2005]最大子矩阵 DP
1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...
- [BZOJ 1084] [SCOI2005] 最大子矩阵 【DP】
题目链接:BZOJ - 1084 题目分析 我看的是神犇BLADEVIL的题解. 1)对于 m = 1 的情况, 首先可能不取 Map[i][1],先 f[i][k] = f[i - 1][k]; ...
- bzoj 1084: [SCOI2005]最大子矩阵【dp】
分情况讨论,m=1的时候比较简单,设f[i][j]为到i选了j个矩形,前缀和转移一下就行了 m=2,设f[i][j][k]为1行前i个,2行前j个,一共选了k个,i!=j的时候各自转移同m=1,否则转 ...
- BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划
传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...
- BZOJ: 1084: [SCOI2005]最大子矩阵
NICE 的DP 题,明白了题解真是不错. Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1228 Solved: 622[Submit][Stat ...
- 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)
1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...
- BZOJ(6) 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3566 Solved: 1785[Submit][Sta ...
- 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1325 Solved: 670[Submit][Stat ...
- Bzoj 1088: [SCOI2005]扫雷Mine (DP)
Bzoj 1088: [SCOI2005]扫雷Mine 怒写一发,算不上DP的游戏题 知道了前\(i-1\)项,第\(i\)项会被第二列的第\(i-1\)得知 设\(f[i]\)为第一列的第\(i\) ...
- 洛谷P2331 [SCOI2005]最大子矩阵 DP
P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...
随机推荐
- python-twisted
环境:win7 64位,python 2.7.3 安装: http://twistedmatrix.com/Releases/Twisted/14.0/Twisted-14.0.0.win-amd64 ...
- 谷歌、百度、1万ip能赚多少钱?1000IP能够值多少钱呢?
谷歌.百度.1万ip能赚多少钱?1000IP能够值多少钱呢? (2014-04-03 11:50:52) 转载▼ 标签: 广告联盟 百度联盟 谷歌联盟 ip赚钱 很多在人问:谷歌.百度:1 ...
- MySQL性能优化的最佳经验
今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我们程序员需要去关注的事情.当我们去设计数据库表结构,对操作数据 ...
- Intersection of Two Arrays | & ||
Intersection of Two Arrays Given two arrays, write a function to compute their intersection. Example ...
- Windows命令行重命名文件
RENAME D:\Cache\xyz.html xyz%date:~0,4%%date:~5,2%%date:~8,2%.tar.gz
- Maven无法引入自定义构件依赖的解决方案
一般情况下,使用如下命令即可将自定义构件安装到本地仓库,供其他项目使用. mvn clean install 但是也有例外,今天我就分享一下我遇到问题,供相同遭遇的同学参考下. 我使用了父POM统一管 ...
- CodeForces - 405A
Gravity Flip Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Submit ...
- Java性能优化权威指南-读书笔记(四)-JVM性能调优-延迟
延迟指服务器处理一个请求所花费的时间,单位一般是ms.s. 本文主要讲降低延迟可以做的服务器端JVM优化. JVM延迟优化 新生代 新生代大小决定了应用平均延迟 如果平均Minor GC持续时间大于应 ...
- July 15th, Week 29th Friday, 2016
A book is a gift that you can open again and again. 书是你可以一次又一次打开的礼物. Some gifts are born with you, a ...
- Android中几种定位 方式
介绍的几种定位方式 http://www.cnblogs.com/cuihongyu3503319/p/3863867.html 百度地图api: http://lbsyun.baidu.com/in ...