吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点
OUTPUT_NODE = 10 # 输出节点
BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数
LEARNING_RATE_BASE = 0.01
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 5000
MOVING_AVERAGE_DECAY = 0.99 def inference(input_tensor, avg_class, weights1, biases1):
# 不使用滑动平均类
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return layer1
else:
# 使用滑动平均类
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
return layer1 def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
# 生成输出层的参数。
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, OUTPUT_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) # 计算不含滑动平均类的前向传播结果
y = inference(x, None, weights1, biases1) # 定义训练轮数及相关的滑动平均类
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
average_y = inference(x, variable_averages, weights1, biases1) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
regularaztion = regularizer(weights1)
loss = cross_entropy_mean + regularaztion # 设置指数衰减的学习率。
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True) # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 反向传播更新参数和更新每一个参数的滑动平均值
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 计算正确率
correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化会话,并开始训练过程。
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 循环的训练神经网络。
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc))
xs,ys=mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x:xs,y_:ys})
test_acc=sess.run(accuracy,feed_dict=test_feed)
print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc))) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__=='__main__':
main()

吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例
import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[ ...
- 吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别
import os import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from ...
随机推荐
- PAT-链表-A1032 Sharing
题意:给出两条链表的首地址以及若干个节点的的地址.数据.下一个节点的地址,求两条链表的首个共用节点的地址.如果两条链表没有共用节点,则输出-1. 思路:使用静态链表,首先遍历一遍第一个链表并进行标记. ...
- gerp 查找, sed 编辑, awk 根据内容分析并处理.的作用
awk(关键字:分析&处理) 一行一行的分析处理 awk '条件类型1{动作1}条件类型2{动作2}' filename, awk 也可以读取来自前一个指令的 standard input相对 ...
- springboot中配置addResourceHandler和addResourceLocations,使得可以从磁盘中读取图片、视频、音频等
磁盘目录 WebMvcConfig的代码 //对静态资源的配置 @Override public void addResourceHandlers(ResourceHandlerRegistry re ...
- 使用java实现AES算法的加解密(亲测可用)
话不多说,直接上代码 import javax.crypto.Cipher; import javax.crypto.spec.IvParameterSpec; import javax.cryp ...
- MyBatis(8)——联表多对一的处理
xml说明: <!--column不做限制,可以为任意表的字段,而property须为type 定义的pojo属性--> <resultMap id="唯一的标识" ...
- MNIST 数据集
mnist 数据集:包含 7 万张黑底白字手写数字图片,其中 55000 张为训练集,5000 张为验证集,10000 张为测试集.每张图片大小为 28*28 像素,图片中纯黑色像素值为 0,纯白色像 ...
- Yii2 框架下 session跨域共享互通
在项目实施过程中,往往把一个大项目进行分拆成几个独立的项目,项目用完全独立的域名和文件,可以放到不同的服务器上的独立分项目. 几个子项目共用一个登录点. 原理简单来说就是服务端session 共享, ...
- AcWing 851. spfa求最短路 边权可能为负数。 链表 队列
#include <cstring> #include <iostream> #include <algorithm> #include <queue> ...
- [爬坑记录] Qt 代码卡住 不发信号 不触发槽
先让我激动一会儿 [捂脸] 最近在用Qt做个程序 用来参加比赛 期间总共遇到两次如标题的问题 也即是 莫名其妙的不触发槽函数了 而且原因也不一样 {先说明 我学习Qt依旧只是入门级 也许入不了大佬法眼 ...
- Spring - Spring Boot - 应用构建与运行
概述 spring boot 应用构建 spring boot 应用运行 背景 之前的看了看 Spring 的书, 结果老懒没实践 而且后续有别的想法, 但这个始终是第一步 1. 准备 知识 java ...