1.媒质的极化

(1) 束缚电荷: 被束缚在原来位置上的电荷.

(2) 在电磁场中, 束缚电荷会有一微小的运动, 而产生电偶极矩. 此即称为媒质的极化.

(3) 设电极化强度 (单位体积的电偶极矩) 为 ${\bf P}$, 则 $$\bex \rho'=-\Div {\bf P}, \eex$$ 其中 $\rho'$ 为束缚电荷体密度. 再由 Gauss 定理, $$\bex \Div{\bf E}=\cfrac{1}{\ve_0}(\rho_f+\rho'), \eex$$ 其中 $\rho_f$ 为自由电荷体密度. 于是 $$\bex \Div{\bf D}=\rho_f,\quad {\bf D}=\ve_0{\bf E}+{\bf P}. \eex$$ 称 ${\bf D}$ 为电通密度或电位移向量.

(4) 当 $E$ 小, 媒质各向同性时, $$\bex {\bf P}=\chi_e{\bf E},\quad {\bf D}=\ve{\bf E}, \eex$$ 其中 $\chi_e$ 为电极化率, $\ve=\ve_0\ve_r$ 为介电常数, $\ve_r=1+\chi_e$ 为相对介电常数.

2. 媒质的磁化

(1) 分子电流: 电子绕原子运动 $+$ 电子自旋.

(2) 在磁场作用下, 分子电流会出现一定程度的规则排列. 此即称为媒质的磁化.

(3) 设磁化强度 (单位体积的磁偶极矩) 为 ${\bf M}$, 则 $$\bex \rot{\bf M}={\bf j}', \eex$$ 其中 ${\bf j}'$ 为磁化电流密度. 再由 Amp\'ere 定理, $$\bex \rot{\bf B}=\mu_0({\bf j}_f+{\bf j}'), \eex$$ 其中 ${\bf j}_f$ 为传导电流密度. 于是 $$\bex \rot{\bf H}={\bf j}_f, \eex$$ 其中 ${\bf H}=\cfrac{1}{\mu_0}{\bf B}-{\bf M}$ 为磁场强度.

(4) 当 $B$ 小, 媒质各向同性时, $$\bex {\bf M}=\chi_m{\bf H},\quad {\bf B}=\mu{\bf H} \eex$$ 其中 $\chi_m$ 为磁化率, $\mu=\mu_0\mu_r$ 为磁导率, $\mu_r=1+\chi_m$ 为相对磁导率.

(5) 对非稳定的情形, $$\bex \rot{\bf H}=\cfrac{\p {\bf D}}{\p t}+{\bf j}_f. \eex$$ 求散度而有 $$\bex \cfrac{\p\rho_f}{\p t}+\Div{\bf j}_f=0. \eex$$ 与电荷守恒定律相容.

3. 媒质中的电荷在电磁场的作用下会出现极化、磁化、传导三种状态. 在各向同性的媒质中, 各向满足的关系为如下的 Maxwell 方程组: $$\beex \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf D}&=-\cfrac{\p{\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfrac{\p{\bf D}}{\p t}+{\bf j}_f. \eea \eeex$$ 另外, 还有电荷守恒律方程 $$\bex \cfrac{\p\rho_f}{\p t}+\Div{\bf j}_f=0. \eex$$ 这里, $\cfrac{\p{\bf D}}{\p t}\equiv {\bf j}_d$ 为位移电流, 并不是真正的电流.

[物理学与PDEs]第1章第7节 媒质中的 Maxwell 方程组 7.1 媒质中的 Maxwell 方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. 【Python 25】52周存钱挑战5.0(datetime库和import)

    1.案例描述 按照52周存钱法,存钱人必须在一年52周内,每周递存10元.例如,第一周存10元,第二周存20元,第三周存30元,直到第52周存520元. 记录52周后能存多少钱?即10+20+30+. ...

  2. Linux Swap交换分区探讨

    Swap交换分区概念 Linux divides its physical RAM (random access memory) into chucks of memory called pages. ...

  3. kernel笔记——网络收发包流程

    本文将介绍网络连接建立的过程.收发包流程,以及其中应用层.tcp层.ip层.设备层和驱动层各层发挥的作用. 应用层 对于使用socket进行网络连接的服务器端程序,我们会先调用socket函数创建一个 ...

  4. 【转】简单理解Vue中的nextTick

    前言: Vue中的nextTick涉及到Vue中DOM的异步更新,感觉很有意思,特意了解了一下.其中关于nextTick的源码涉及到不少知识,很多不太理解,暂且根据自己的一些感悟介绍下nextTick ...

  5. React Router路由传参方式总结

    首先我们要知道一个前提,路由传递的参数我们可以通过props里面的属性来获取.只要组件是被<Router>组件的<component>定义和指派的,这个组件自然就有了props ...

  6. UVA - 11374 - Airport Express(堆优化Dijkstra)

    Problem    UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...

  7. NodeJS之异常处理

    1. 为什么要处理异常? 如果我们不处理异常的话,直接会导致程序奔溃,用户体验比较差,因此我们要对异常进行处理,当出现异常的情况下,我们要给用户一个友好的提示,并且记录该异常,方便我们排查. 2. 在 ...

  8. 聊聊计算机中的编码(Unicode,GBK,ASCII,utf8,utf16,ISO8859-1等)以及乱码问题的解决办法

    作为一个程序员,一个中国的程序员,想来“乱码”问题基本上都遇到过,也为之头疼过.出现乱码问题的根本原因是编码与解码使用了不同而且不兼容的“标准”,在国内一般出现在中文的编解码过程中. 我们平时常见的编 ...

  9. Winform数据库连接app.config文件配置

    1.添加配置文件 新建一个winform应用程序,类似webfrom下有个web.config,winform下也有个App.config;不过 App.config不是自动生成的需要手动添加,鼠标右 ...

  10. openstack搭建之-基础服务配置(7)

    基础环境准备,所需服务器及说明 172.16.2.51     base.test.com 基础服务节点 172.16.2.52     ctrl.test.com 控制节点 172.16.2.53  ...