1.媒质的极化

(1) 束缚电荷: 被束缚在原来位置上的电荷.

(2) 在电磁场中, 束缚电荷会有一微小的运动, 而产生电偶极矩. 此即称为媒质的极化.

(3) 设电极化强度 (单位体积的电偶极矩) 为 ${\bf P}$, 则 $$\bex \rho'=-\Div {\bf P}, \eex$$ 其中 $\rho'$ 为束缚电荷体密度. 再由 Gauss 定理, $$\bex \Div{\bf E}=\cfrac{1}{\ve_0}(\rho_f+\rho'), \eex$$ 其中 $\rho_f$ 为自由电荷体密度. 于是 $$\bex \Div{\bf D}=\rho_f,\quad {\bf D}=\ve_0{\bf E}+{\bf P}. \eex$$ 称 ${\bf D}$ 为电通密度或电位移向量.

(4) 当 $E$ 小, 媒质各向同性时, $$\bex {\bf P}=\chi_e{\bf E},\quad {\bf D}=\ve{\bf E}, \eex$$ 其中 $\chi_e$ 为电极化率, $\ve=\ve_0\ve_r$ 为介电常数, $\ve_r=1+\chi_e$ 为相对介电常数.

2. 媒质的磁化

(1) 分子电流: 电子绕原子运动 $+$ 电子自旋.

(2) 在磁场作用下, 分子电流会出现一定程度的规则排列. 此即称为媒质的磁化.

(3) 设磁化强度 (单位体积的磁偶极矩) 为 ${\bf M}$, 则 $$\bex \rot{\bf M}={\bf j}', \eex$$ 其中 ${\bf j}'$ 为磁化电流密度. 再由 Amp\'ere 定理, $$\bex \rot{\bf B}=\mu_0({\bf j}_f+{\bf j}'), \eex$$ 其中 ${\bf j}_f$ 为传导电流密度. 于是 $$\bex \rot{\bf H}={\bf j}_f, \eex$$ 其中 ${\bf H}=\cfrac{1}{\mu_0}{\bf B}-{\bf M}$ 为磁场强度.

(4) 当 $B$ 小, 媒质各向同性时, $$\bex {\bf M}=\chi_m{\bf H},\quad {\bf B}=\mu{\bf H} \eex$$ 其中 $\chi_m$ 为磁化率, $\mu=\mu_0\mu_r$ 为磁导率, $\mu_r=1+\chi_m$ 为相对磁导率.

(5) 对非稳定的情形, $$\bex \rot{\bf H}=\cfrac{\p {\bf D}}{\p t}+{\bf j}_f. \eex$$ 求散度而有 $$\bex \cfrac{\p\rho_f}{\p t}+\Div{\bf j}_f=0. \eex$$ 与电荷守恒定律相容.

3. 媒质中的电荷在电磁场的作用下会出现极化、磁化、传导三种状态. 在各向同性的媒质中, 各向满足的关系为如下的 Maxwell 方程组: $$\beex \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf D}&=-\cfrac{\p{\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfrac{\p{\bf D}}{\p t}+{\bf j}_f. \eea \eeex$$ 另外, 还有电荷守恒律方程 $$\bex \cfrac{\p\rho_f}{\p t}+\Div{\bf j}_f=0. \eex$$ 这里, $\cfrac{\p{\bf D}}{\p t}\equiv {\bf j}_d$ 为位移电流, 并不是真正的电流.

[物理学与PDEs]第1章第7节 媒质中的 Maxwell 方程组 7.1 媒质中的 Maxwell 方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. HO6 Condo Insurance Policy

    The HO6 insurance Policy is the most common type of policy used to insure town homes and condos in t ...

  2. Linux中删除特殊名称文件的多种方式

    今日分享:我们在肉体的疾病方面花了不少钱,精神的病害方面却没有花什么,现在已经到了时候,我们应该有不平凡的学校.--<瓦尔登湖> 前言 我们都知道,在linux删除一个文件可以使用rm命令 ...

  3. 【Linux基础】查看硬件信息-CPU

    1.物理CPU数:计算机上实际配置的CPU个数. //查看计算机物理CPU个数(必须先sort后uniq) cat /proc/cpuinfo | grep "physical id&quo ...

  4. kubernetes-核心资源之Ingress

    1.Ingress 在Kubernetes中,服务和Pod的IP地址仅可以在集群网络内部使用,对于集群外的应用是不可见的.为了使外部的应用能够访问集群内的服务,在Kubernetes中可以通过Node ...

  5. Vue项目分环境打包的实现步骤

    转:https://blog.csdn.net/xinzi11243094/article/details/80521878 方法一:亲测真的有效 在项目开发中,我们的项目一般分为开发版.测试版.Pr ...

  6. 如何判断app的页面是原生的还是H5的webview页面

    1.看布局边界(在手机侧观察) 开发者选项->显示布局边界,页面元素很多的情况下布局是一整块的是h5的,布局密密麻麻的是原生控件.页面有布局的是原生的,否则为h5页面.(仅针对安卓手机试用)如下 ...

  7. (hdu 6030) Happy Necklace 找规律+矩阵快速幂

    题目链接 :http://acm.hdu.edu.cn/showproblem.php?pid=6030 Problem Description Little Q wants to buy a nec ...

  8. Redis单机配置多实例,实现主从同步

    版权声明:本文为博主原创文章,欢迎转载,转载请保留或注明出处 本文转自:http://www.cnblogs.com/lgeng/p/6623336.html 一,单机多实例:Redis官网: htt ...

  9. Python 使用 matplotlib绘制3D图形

    3D图形在数据分析.数据建模.图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何在Python中使用 matplotlib进行3D图形的绘制,包括3D散点.3D表面.3D轮廓.3D直线( ...

  10. Python——字符格式化

    一.分类:%格式符方式,format方式 二.%格式符 1.%s——字符占位,%d——数字占位(十进制) a = ("%(name)s--%(age)d" % {'name':'x ...