51nod1031 骨牌覆盖 组合数学

不难发现,只有$1 * 2, 2 * 2$两种方法
因此,设$f[i]$表示填满$1 - i$的方案数
那么有$f[i] = f[i - 1] + f[i - 2]$,其实就是斐波那契数列....
复杂度$O(n)$
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; #define ri register int
#define mod 1000000007 int n;
int f[]; int main() {
cin >> n;
f[] = ; f[] = ;
for(ri i = ; i <= n; i ++)
f[i] = (f[i - ] + f[i - ]) % mod;
printf("%d\n", f[n]);
return ;
}
51nod1031 骨牌覆盖 组合数学的更多相关文章
- 随便玩玩系列之一:SPOJ-RNG+51nod 算法马拉松17F+51nod 1034 骨牌覆盖v3
先说说前面的SPOJ-RNG吧,题意就是给n个数,x1,x2,...,xn 每次可以生成[-x1,x1]范围的浮点数,把n次这种操作生成的数之和加起来,为s,求s在[A,B]内的概率 连续形的概率 假 ...
- hiho #1151 : 骨牌覆盖问题·二 (递推,数论)
#1151 : 骨牌覆盖问题·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题? ...
- hiho #1143 : 骨牌覆盖问题·一 (运用快速幂矩阵)
#1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然 ...
- hiho42 : 骨牌覆盖问题·二
描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定, ...
- hiho41 : 骨牌覆盖问题·一
原问题:骨牌覆盖问题 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然后用1x2的 ...
- hihocoder第42周 3*N骨牌覆盖(状态dp+矩阵快速幂)
http://hihocoder.com/contest/hiho42/problem/1 给定一个n,问我们3*n的矩阵有多少种覆盖的方法 第41周做的骨牌覆盖是2*n的,状态转移方程是dp[i] ...
- 1007 正整数分组 1010 只包含因子2 3 5的数 1014 X^2 Mod P 1024 矩阵中不重复的元素 1031 骨牌覆盖
1007 正整数分组 将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. Input 第1行:一个 ...
- 【hdu6185】Covering(骨牌覆盖)
2017ACM/ICPC广西邀请赛-重现赛1004Covering 题意 n*4的格子,用1*2和2*1的砖块覆盖.问方案数(mod 1e9+7).(n不超过1e9) 题解 递推了个式子然后错位相减. ...
- hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...
随机推荐
- 【洛谷 P2120】 [ZJOI2007]仓库建设(斜率优化)
题目链接 斜率优化+1,好吧不水分了. 玩具装箱那题以后再做,当作复习吧. \(f[i]=f[j]-(sum[i]-sum[j])*dis[i]+p[i]\) \(f[j]=-dis[i]*sum[j ...
- NB二人组(二)----归并排序
归并排序的思路: 归并算法程序(配合下图进行思考): def merge(li,low,mid,high): i = low j = mid + 1 ltmp=[] while i <= mid ...
- Android Service使用简单介绍
作为一个android初学者,经常对service的使用感到困惑.今天结合Google API 对Service这四大组件之一,进行简单使用说明. 希望对和我一样的初学者有帮助,如有不对的地方,也希望 ...
- Coursera在线学习---第一节.梯度下降法与正规方程法求解模型参数比较
一.梯度下降法 优点:即使特征变量的维度n很大,该方法依然很有效 缺点:1)需要选择学习速率α 2)需要多次迭代 二.正规方程法(Normal Equation) 该方法可以一次性求解参数Θ 优点:1 ...
- 014 JVM面试题
转自:http://www.importnew.com/31126.html 本文从 JVM 结构入手,介绍了 Java 内存管理.对象创建.常量池等基础知识,对面试中 JVM 相关的基础题目进行了讲 ...
- Xcode及模拟器SDK下载
http://blog.csdn.net/zhangao0086/article/details/38491271 吐槽下,百度打着无限分享的旗号,却又让分享资源过期,让分享者持续维护 如果你嫌在Ap ...
- python是如何进行内存管理的?
Python内存管理机制 Python内存管理机制主要包括以下三个方面: 引用计数机制 垃圾回收机制 内存池机制 引用计数 举个例子说明引用是什么: 1 如上为一个简单的赋值语句,1就是对象,a就是引 ...
- WebService初识
Web service 是一种跨编程语言和跨操作系统平台的远程调用技术,即跨平台远程调用技术.也就是说,不管是J2EE架构,还是.net架构 只要按照规范就可以进行通信,实现数据交互等. 这里说的&q ...
- php 学习try_catch测试抛出异常
/** * Class show * 一个catch接收抛出异常 */ class show { // 错误的演示 //try { //require ('test_try_catch.php'); ...
- jQuery对的表单数据序列化和校验
jQuery对的表单数据序列化和校验 表单序列化 如果想让表单通过ajax异步提交,那么首先我们要通过js获取到每个表单中输入的值,如果表单项比较多的话,是一件很麻烦,很痛苦的事情,那么我们可以通过j ...