[JLOI2014] 松鼠的新家 (lca/树上差分)
[JLOI2014]松鼠的新家
题目描述
松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的。天哪,他居然真的住在”树“上。
松鼠想邀请小熊维尼前来参观,并且还指定一份参观指南,他希望维尼能够按照他的指南顺序,先去a1,再去a2,......,最后到an,去参观新家。可是这样会导致维尼重复走很多房间,懒惰的维尼不停地推辞。可是松鼠告诉他,每走到一个房间,他就可以从房间拿一块糖果吃。
维尼是个馋家伙,立马就答应了。现在松鼠希望知道为了保证维尼有糖果吃,他需要在每一个房间各放至少多少个糖果。
因为松鼠参观指南上的最后一个房间an是餐厅,餐厅里他准备了丰盛的大餐,所以当维尼在参观的最后到达餐厅时就不需要再拿糖果吃了。
输入输出格式
输入格式:
第一行一个整数n,表示房间个数第二行n个整数,依次描述a1-an
接下来n-1行,每行两个整数x,y,表示标号x和y的两个房间之间有树枝相连。
输出格式:
一共n行,第i行输出标号为i的房间至少需要放多少个糖果,才能让维尼有糖果吃。
输入输出样例
输入样例#1:
5
1 4 5 3 2
1 2
2 4
2 3
4 5
输出样例#1:
1
2
1
2
1
说明
2<= n <=300000
Solution
树上差分中算比较裸的题了...
这道题是点差分(先要记住一个套路,点差分是在lca和其父节点-1,边差分将其转化到点上,在lca上-2)
for (int i=1;i<n;i++) {
int lca=LCA(a[i],a[i+1]);
cnt[a[i]]++, cnt[a[i+1]]++;
cnt[lca]--, cnt[f[0][lca]]--;
}
然后dfs统计就可以了
但是如果仅仅这样的话,我们发现,从a[2]~a[n-1]我们都多统计了一次,所以要减回来,然后因为到了a[n]就停了,所以不要给a[n]准备,也要减
for (int i=2;i<=n;i++) cnt[a[i]]--;
就这样...没了
Code
#include<bits/stdc++.h>
#define in(i) (i=read())
using namespace std;
const int N=3e5+10;
int read() {
int ans=0,f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+(i^48),i=getchar();
return ans*f;
}
int n,m,cur;
int head[N],nex[N<<1],to[N<<1];
int dep[N],f[25][N],cnt[N],lg[N]={-1},a[N];
void add(int a,int b) {
to[++cur]=b,nex[cur]=head[a],head[a]=cur;
to[++cur]=a,nex[cur]=head[b],head[b]=cur;
}
void init() {
for (int i=1;i<=n;i++) lg[i]=lg[i>>1]+1;
for (int i=1;i<=lg[n];i++)
for (int j=1;j<=n;j++)
f[i][j]=f[i-1][f[i-1][j]];
}
void dfs(int u) {
for (int i=head[u];i;i=nex[i]) {
if(to[i]==f[0][u]) continue;
f[0][to[i]]=u, dep[to[i]]=dep[u]+1;
dfs(to[i]);
}
}
int LCA(int a,int b) {
if(dep[a] > dep[b]) swap(a,b);
int s=dep[b]-dep[a];
for (int i=lg[s];i>=0;i--)
if(s>>i&1) b=f[i][b];
if(a==b) return a;
for (int i=lg[n];i>=0;i--) {
if(f[i][a]==f[i][b]) continue;
a=f[i][a], b=f[i][b];
}return f[0][a];
}
void find(int u) {
for (int i=head[u];i;i=nex[i]) {
if(to[i]==f[0][u]) continue;
find(to[i]); cnt[u]+=cnt[to[i]];
}
}
int main()
{
in(n); for (int i=1;i<=n;i++) in(a[i]);
for (int i=1,x,y;i<n;i++)
in(x), in(y), add(x,y);
dfs(1), init();
for (int i=1;i<n;i++) {
int lca=LCA(a[i],a[i+1]);
cnt[a[i]]++, cnt[a[i+1]]++;
cnt[lca]--, cnt[f[0][lca]]--;
}
find(1);
for (int i=2;i<=n;i++) cnt[a[i]]--;
for (int i=1;i<=n;i++) printf("%d\n",cnt[i]);
}
[JLOI2014] 松鼠的新家 (lca/树上差分)的更多相关文章
- P3258[JLOI2014]松鼠的新家(LCA 树上差分)
P3258 [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...
- luoguP3258 [JLOI2014]松鼠的新家 题解(树上差分)
P3258 [JLOI2014]松鼠的新家 题目 树上差分:树上差分总结 #include<iostream> #include<cstdlib> #include<c ...
- 洛谷P3258 [JLOI2014]松鼠的新家(树上差分+树剖)
题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在”树“上. 松鼠想邀请小熊维尼前 ...
- BZOJ3631 [JLOI2014]松鼠的新家 【树上差分】
题目 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在"树"上.松鼠想 ...
- bzoj3631: [JLOI2014]松鼠的新家(树上差分)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3631 题目大意:给定含有n个顶点的树,给定走遍整棵树顺序的序列a[1],a[2],a[3 ...
- [Bzoj3631][JLOI2014]松鼠的新家 (树上前缀和)
3631: [JLOI2014]松鼠的新家 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2350 Solved: 1212[Submit][Sta ...
- 【bzoj3631】[JLOI2014]松鼠的新家 LCA+差分数组
题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在“树”上.松鼠想邀请小熊维尼前来 ...
- [填坑]树上差分 例题:[JLOI2014]松鼠的新家(LCA)
今天算是把LCA这个坑填上了一点点,又复习(其实是预习)了一下树上差分.其实普通的差分我还是会的,树上的嘛,也是懂原理的就是没怎么打过. 我们先来把树上差分能做到的看一下: 1.找所有路径公共覆盖的边 ...
- 【洛谷】【lca+树上差分】P3258 [JLOI2014]松鼠的新家
[题目描述:] 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n(2 ≤ n ≤ 300000)个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真 ...
随机推荐
- CSP201604-2:俄罗斯方块
引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...
- C语言自评
问卷调查:你对自己的未来有什么规划?做了哪些准备?答:做设计方面的工作:正在努力自学有关这方面的知识 你认为什么是学习?学习有什么用?现在学习动力如何?为什么?答:学习就是增长见识:学习的作用就是为了 ...
- Java 数组转字符
public static String toString(int[] arr){ String temp = ""; for(int i = 0;i<arr.length; ...
- HttpWebRequest下载文件,乱码问题解决方案
写在前面 今天之所以会总结HttpWebRequest下载文件,主要是因为在使用该类下载文件的时候,有些地方需要注意一下,在实际的项目中遇到过这种问题,觉得还是有必要总结一下的.在下载文件时,最常见的 ...
- rsyslog配置文件详解(rsyslog.conf)
# rsyslog configuration file # For more information see /usr/share/doc/rsyslog-*/rsyslog_conf.html # ...
- 奇异值分解(SVD) --- 几何意义 (转载)
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...
- Hibernate 中一级缓存和快照区的理解
刚刚开始的时候觉得这个快照区很难理解,在网上看了很多博客之后,开始明白了.我是结合 ADO.NET 理解的,在ADO.NET 中有一个类, 叫 SqlCommandBuilder,在我看来,他就是 A ...
- php 随机密码和盐 来自wordpress
生成随机密码或盐. Generate keys and salts using secure CSPRNG $chars = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJ ...
- 辣鸡蒟蒻Klaier的一些计划
需要熟练的东西:cdq分治,堆,树链剖分,tarjan及其它一些图论算法,网络流,kmp,字符串哈希,线段树主席树,树状数组,斜率优化dp 需要学的东西:lct,后缀数组,AC自动机,平衡树 球队收益 ...
- 【bzoj3560】DZY Loves Math V 欧拉函数
题目描述 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). 输入 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. 输出 仅一行答案. 样例输入 3 ...