P2868 [USACO07DEC]观光奶牛Sightseeing Cows


![](https://www.cnblogs.com/images/cnblogs_com/Tony-Double-Sky/1270353/o_YH[_INPMKE_4RY]3DF(33@G.png)


错误日志: dfs 判负环没有把初值赋为 \(0\) 而是 \(INF\), 速度变慢


Solution

设现在走到了一个环, 环内有 \(n\) 个点, \(n\) 条边, 点权为 \(f_{i}\), 边权为 \(e_{i}\)

设 \(k = \sum_{i = 1}^{n}\frac{f_{i}}{e_{i}}\), 显然是 0/1分数规划模型, 变形可得: \(\sum_{i = 1}^{n}f_{i} - k * ei \geq 0\) 时 \(k\) 合法

此式不太好判断, 我们在不等式两边乘上 \(-1\), 得 \(\sum_{i = 1}^{n}k * e_{i} - f_{i} \leq 0\) ,转换为图中负环的判定

若存在负环则此 \(k\) 合法

二分求解0/1分数规划即可

求负环的时候, 初始距离全部设为 \(0\)

如果有负环的话此个距离 \(0\) 肯定能变得更小, 赋0可以减少更新量, 加快效率

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 2019,INF = 1e9, maxv = 20019;;
int head[maxn],nume = 1;
struct Node{
int v,dis,nxt;
}E[maxv << 3];
void add(int u,int v,int dis){
E[++nume].nxt = head[u];
E[nume].v = v;
E[nume].dis = dis;
head[u] = nume;
}
int num, nr;
double f[maxn];//愉♂悦值
double d[maxn];
bool ins[maxn], vis[maxn], flag;
void SPFA_dfs(int u, double k){
ins[u] = 1, vis[u] = 1;
for(int i = head[u];i;i = E[i].nxt){
int v = E[i].v;
double dis = E[i].dis;
if(d[u] + k * dis - f[v] <= d[v]){
if(ins[v] || flag){flag = 1;return ;}
d[v] = d[u] + k * dis - f[v];
SPFA_dfs(v, k);
}
}
ins[u] = 0;
}
bool check(double k){
REP(i, 1, num)d[i] = 0, vis[i] = 0, ins[i] = 0;
flag = 0;
REP(i, 1, num){
if(!vis[i])d[i] = 0, SPFA_dfs(i, k);
if(flag)return 1;
}
return flag;
}
double search(double l, double r){
double ans;
while(r - l >= 1e-3){
double mid = (l + r) / 2;
if(check(mid))ans = mid, l = mid;
else r = mid;
}
return ans;
}
double maxx = 0;
int main(){
num = RD(), nr = RD();
REP(i, 1, num)f[i] = RD(), maxx += f[i];
REP(i, 1, nr){
int u = RD(), v = RD(), dis = RD();
add(u, v, dis);
}
printf("%.2lf\n", search(0, maxx));
return 0;
}

P2868 [USACO07DEC]观光奶牛Sightseeing Cows的更多相关文章

  1. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...

  2. 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  3. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  4. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)

    题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...

  5. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解

    题面 这道题是一道标准的01分数规划: 但是有一些细节可以优化: 不难想到要二分一个mid然后判定图上是否存在一个环S,该环是否满足∑i=1t(Fun[vi]−mid∗Tim[ei])>0 但是 ...

  6. [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  7. POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows

    一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...

  8. Luogu 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    01分数规划复习. 这东西有一个名字叫做最优比率环. 首先这个答案具有单调性,我们考虑如何检验. 设$\frac{\sum_{i = 1}^{n}F_i}{\sum_{i = 1}^{n}T_i} = ...

  9. 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...

随机推荐

  1. PostgreSQL安装和配置---Ubuntu

    PostgreSQL安装和配置---Ubuntu

  2. 详细聊聊k8s deployment的滚动更新(一)

    一.知识准备 ● 本文详细探索deployment在滚动更新时候的行为 二.环境准备 组件 版本 OS Ubuntu 18.04.1 LTS docker 18.06.0-ce 三.准备镜像 首先准备 ...

  3. K8s爆严重安全漏洞?有何应对措施与建议

    Kubernetes最近爆出严重安全漏洞,影响几乎目前所有的版本.实际影响究竟多大?老版本用户是否必须升级?以下是华为云容器服务团队对该漏洞的分析解读. Kubernetes爆出的严重安全漏洞: 攻击 ...

  4. 最近在研究google的angularjs

    最近在研究google的angularjs,先做个简单的例子来试试. <!doctype html> <html lang="en" ng-app="m ...

  5. Substrings (C++ find函数应用)

    Description You are given a number of case-sensitive strings of alphabetic characters, find the larg ...

  6. 决胜 Poker

    团队展示 队名 决胜 Poker 团队人员 211606392 郑俊瑜 (队长) 211606355 陈映宏 211606358 陈卓楠 211606386 姚皓钰 211606323 刘世华 211 ...

  7. SDN竞赛思考总结

    SDN竞赛思考总结 2016年下半年张老师开始着手组建SDN小组,从未接触过任何网络知识的我也有幸成为小组一员.从最开始刷Openflow交换机,Get了刷交换机的新技能;到P4FPGA的无疾而终,表 ...

  8. img 分区响应图

    ---恢复内容开始--- a标签的target为_blank属性,意为跳转到新的页面. shape要和coords配合使用,shape为rect时意义为矩形.shape 为不同属性时意为不同的形态触碰 ...

  9. Maven 学习笔记——将普通的Java项目转换成Maven项目(3)

    将一个普通的java项目转换成Maven项目并不是一个很大的任务,仅仅只需要下面的几步就能将转换成功.下面我是用一个简单的Selenium测试小demon作为例子来说的. 移调项目中所有关联的Libr ...

  10. 极简版 卸载 home 扩充 根分区--centos7 xfs 文件格式

    1. 查看文件系统 df -Th 2. 关闭正常连接 /home的用户 fuser /home 3. 卸载 /home的挂载点 umount /home 4.删除home的lv 注意 lv的名称的写法 ...