Scrambled Polygon
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 10841   Accepted: 5085

Description

A closed polygon is a figure bounded by a finite number of line segments. The intersections of the bounding line segments are called the vertices of the polygon. When one starts at any vertex of a closed polygon and traverses each bounding line segment exactly once, one comes back to the starting vertex. 

A closed polygon is called convex if the line segment joining any two points of the polygon lies in the polygon. Figure 1 shows a closed polygon which is convex and one which is not convex. (Informally, a closed polygon is convex if its border doesn't have any "dents".) 

The subject of this problem is a closed convex polygon in the coordinate plane, one of whose vertices is the origin (x = 0, y = 0). Figure 2 shows an example. Such a polygon will have two properties significant for this problem. 

The first property is that the vertices of the polygon will be confined to three or fewer of the four quadrants of the coordinate plane. In the example shown in Figure 2, none of the vertices are in the second quadrant (where x < 0, y > 0). 

To describe the second property, suppose you "take a trip" around the polygon: start at (0, 0), visit all other vertices exactly once, and arrive at (0, 0). As you visit each vertex (other than (0, 0)), draw the diagonal that connects the current vertex with (0, 0), and calculate the slope of this diagonal. Then, within each quadrant, the slopes of these diagonals will form a decreasing or increasing sequence of numbers, i.e., they will be sorted. Figure 3 illustrates this point. 
 

Input

The input lists the vertices of a closed convex polygon in the plane. The number of lines in the input will be at least three but no more than 50. Each line contains the x and y coordinates of one vertex. Each x and y coordinate is an integer in the range -999..999. The vertex on the first line of the input file will be the origin, i.e., x = 0 and y = 0. Otherwise, the vertices may be in a scrambled order. Except for the origin, no vertex will be on the x-axis or the y-axis. No three vertices are colinear.

Output

The output lists the vertices of the given polygon, one vertex per line. Each vertex from the input appears exactly once in the output. The origin (0,0) is the vertex on the first line of the output. The order of vertices in the output will determine a trip taken along the polygon's border, in the counterclockwise direction. The output format for each vertex is (x,y) as shown below.

Sample Input

0 0
70 -50
60 30
-30 -50
80 20
50 -60
90 -20
-30 -40
-10 -60
90 10

Sample Output

(0,0)
(-30,-40)
(-30,-50)
(-10,-60)
(50,-60)
(70,-50)
(90,-20)
(90,10)
(80,20)
(60,30)
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
using namespace std; const int MAXN =55;
const double PI= acos(-1.0);
//精度
double eps=1e-8;
//避免出现-0.00情况,可以在最后加eps
//精度比较
int sgn(double x)
{
if(fabs(x)<=eps)return 0;
if(x<0)return -1;
return 1;
} //点的封装
struct Point
{
double x,y;
Point (){}
//赋值
Point (double _x,double _y)
{
x=_x;
y=_y;
}
//点相减
Point operator -(const Point &b)const
{
return Point (x-b.x,y-b.y);
}
//点积
double operator *(const Point &b)const
{
return x*b.x+y*b.y;
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
} ; //线的封装
struct Line
{
Point s,e;
Line (){}
Line (Point _s,Point _e)
{
s=_s;
e=_e;
}
//平行和重合判断 相交输出交点
//直线相交和重合判断,不是线段,
Point operator &(const Line &b)const{
Point res=b.s;
if(sgn((e-s)^(b.e-b.s))==0)
{
if(sgn((e-s)^(e-b.e))==0)
{
//重合
return Point(0,0);
}
else
{
//平行
return Point(0,0);
}
}
double t=((e-s)^(s-b.s))/((e-s)^(b.e-b.s));
res.x+=(b.e.x-b.s.x)*t;
res.y+=(b.e.y-b.s.y)*t;
return res;
}
}; //向量叉积
double xmult(Point p0,Point p1,Point p2)
{
return (p0-p1)^(p2-p1);
} //线段和线段非严格相交,相交时true
//此处是线段
bool seg_seg(Line l1,Line l2)
{
return sgn(xmult(l1.s,l2.s,l2.e)*xmult(l1.e,l2.s,l2.e))<=0&&sgn(xmult(l2.s,l1.s,l1.e)*xmult(l2.e,l1.s,l1.e))<=0;
} //两点之间的距离
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} //极角排序;对100个点进行极角排序
int pos;//极点下标
Point p[MAXN];
int Stack[MAXN],top;
bool cmp(Point a,Point b)
{
double tmp=sgn((a-p[pos])^(b-p[pos]));//按照逆时针方向进行排序
if(tmp==0)return dist(a,p[pos])<dist(b,p[pos]);
if(tmp<0)return false ;
return true;
}
void Graham(int n)
{
Point p0;
int k=0;
p0=p[0];
for(int i=1;i<n;i++)//找到最左下边的点
{
if(p0.y>p[i].y||(sgn(p0.y-p[i].y))==0&&p0.x>p[i].x)
{
p0=p[i];
k=i;
}
}
swap(p[k],p[0]);
sort(p+1,p+n,cmp);
if(n==1)
{
top=2;
Stack[0]=0;
return ;
}
if(n==2)
{
top=2;
Stack[0]=0;
Stack[1]=1;
return ;
}
Stack[0]=0;Stack[1]=1;
top=2;
for(int i=2;i<n;i++)
{
while(top>1&&sgn((p[Stack[top-1]]-p[Stack[top-2]])^(p[i]-p[Stack[top-2]]))<=0)
top--;
Stack[top++]=i;
}
} int main ()
{
int t=0;
while(~scanf("%lf%lf",&p[t].x,&p[t].y))
t++;
Graham(t);
for(int i=0;i<t;i++)
{
if(p[i].x==0&&p[i].y==0)
{
swap(p[i],p[0]);
break;
}
}
sort(p,p+t,cmp);
for(int i=0;i<t;i++)
printf("(%.f,%.f)\n",p[i].x,p[i].y);
return 0;
}

极角排序:

根据逆时针顺序进行排序

poj 2007 凸包构造和极角排序输出(模板题)的更多相关文章

  1. poj 2007 Scrambled Polygon(极角排序)

    http://poj.org/problem?id=2007 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6701   A ...

  2. poj 1696:Space Ant(计算几何,凸包变种,极角排序)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2876   Accepted: 1839 Descrip ...

  3. poj 1696 Space Ant (极角排序)

    链接:http://poj.org/problem?id=1696 Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  4. POJ 1696 Space Ant 【极角排序】

    题意:平面上有n个点,一只蚂蚁从最左下角的点出发,只能往逆时针方向走,走过的路线不能交叉,问最多能经过多少个点. 思路:每次都尽量往最外边走,每选取一个点后对剩余的点进行极角排序.(n个点必定能走完, ...

  5. POJ 1696 Space Ant(极角排序)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2489   Accepted: 1567 Descrip ...

  6. POJ 2280 Amphiphilic Carbon Molecules 极角排序 + 扫描线

    从TLE的暴力枚举 到 13313MS的扫描线  再到 1297MS的简化后的扫描线,简直感觉要爽翻啦.然后满怀欣喜的去HDU交了一下,直接又回到了TLE.....泪流满面 虽说HDU的时限是2000 ...

  7. 【计算几何】【凸包】【极角排序】【二分】Gym - 101128J - Saint John Festival

    平面上n个红点,m个黑点,问你多少个黑点至少在一个红三角形内. 对红点求凸包后,转化为询问有多少个黑点在凸包内. 点在凸多边形内部判定,选定一个凸包上的点作原点,对凸包三角剖分,将其他的点极角排序之后 ...

  8. poj 3683 2-sat建图+拓扑排序输出结果

    发现建图的方法各有不同,前面一题连边和这一题连边建图的点就不同,感觉这题的建图方案更好. 题意:给出每个婚礼的2个主持时间,每个婚礼的可能能会冲突,输出方案. 思路:n个婚礼,2*n个点,每组点是对称 ...

  9. POJ 1981 最大点覆盖问题(极角排序)

    Circle and Points Time Limit: 5000MS   Memory Limit: 30000K Total Submissions: 8346   Accepted: 2974 ...

随机推荐

  1. JVM-03

    目录 1.1 新生代垃圾收集器 1.1.1 Serial 垃圾收集器(单线程) 1.1.2 ParNew 垃圾收集器(多线程) 1.1.3 Parallel Scavenge 垃圾收集器(多线程) 2 ...

  2. 计算机考研复试 A+B

    题目描述 读入两个小于100的正整数A和B,计算A+B. 需要注意的是:A和B的每一位数字由对应的英文单词给出. 输入描述: 测试输入包含若干测试用例,每个测试用例占一行,格式为"A + B ...

  3. oracle出现未选定行

    初学oracle,在SQLplus输入查询命令 出现了以下情况.. 后来了解到oracle的SQL语句其中有些词必须大写才会有效. 在这个语句中将username后面的值改为大写就可以了. 还有一种就 ...

  4. 天梯赛练习 L3-008 喊山 (30分) bfs搜索

    题目分析: 本题是一题比较简单的bfs搜索题,首先由于数据给的比较多不能直接开二维数组存放,而是用了vector的动态的二维数组的形式存放,对于每个出发点,我们bfs向四周搜索,标记搜索过的点,遇到搜 ...

  5. Linux 入门教程:基础操作 01

    1.1 实验内容 实验楼环境介绍 常用 Shell 命令及快捷键 Linux 使用小技巧 1.2 实验知识点 Linux 基本命令 通配符的使用 查看帮助文档 终端的概念 通常我们在使用 Linux ...

  6. Pycharm同时执行多个脚本文件

    Pycharm同时执行多个脚本文件 设置Pycharm使它可以同时执行多个程序 打开Pycharm 找到Run,点击确认 点击Edit Configurations 右上角Allow parallel ...

  7. 【Oracle】delete表后commit后怎么找回,方法

    有些时候,不小心删除了一些需要的表,而且数据库不能停止,只能一直运行下去,这样的话很麻烦 下面介绍的方法就是删除表后通过时间戳后者scn找回删除的数据 模拟实验环境: 创建一个新表 SQL> c ...

  8. 你不知道的Linux目录

    Linux二级目录及其对应的作用 主要文件

  9. Sentinel上下文创建及执行

    Sentinel上下文创建及执行,入口示例代码: public static void fun() { Entry entry = null; try { entry = SphU.entry(SOU ...

  10. 关于springboot项目通过jar包启动之后无法读取项目根路径静态资源

    在一次项目开发过程中,项目根路径下存放了一张图片,生成二维码的时候调用了该图片作为二维码的logo,在windows环境下二维码可以正常生成,但是部署到生产测试环境之后二维码生成报错,FileNotF ...