Scrambled Polygon
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 10841   Accepted: 5085

Description

A closed polygon is a figure bounded by a finite number of line segments. The intersections of the bounding line segments are called the vertices of the polygon. When one starts at any vertex of a closed polygon and traverses each bounding line segment exactly once, one comes back to the starting vertex. 

A closed polygon is called convex if the line segment joining any two points of the polygon lies in the polygon. Figure 1 shows a closed polygon which is convex and one which is not convex. (Informally, a closed polygon is convex if its border doesn't have any "dents".) 

The subject of this problem is a closed convex polygon in the coordinate plane, one of whose vertices is the origin (x = 0, y = 0). Figure 2 shows an example. Such a polygon will have two properties significant for this problem. 

The first property is that the vertices of the polygon will be confined to three or fewer of the four quadrants of the coordinate plane. In the example shown in Figure 2, none of the vertices are in the second quadrant (where x < 0, y > 0). 

To describe the second property, suppose you "take a trip" around the polygon: start at (0, 0), visit all other vertices exactly once, and arrive at (0, 0). As you visit each vertex (other than (0, 0)), draw the diagonal that connects the current vertex with (0, 0), and calculate the slope of this diagonal. Then, within each quadrant, the slopes of these diagonals will form a decreasing or increasing sequence of numbers, i.e., they will be sorted. Figure 3 illustrates this point. 
 

Input

The input lists the vertices of a closed convex polygon in the plane. The number of lines in the input will be at least three but no more than 50. Each line contains the x and y coordinates of one vertex. Each x and y coordinate is an integer in the range -999..999. The vertex on the first line of the input file will be the origin, i.e., x = 0 and y = 0. Otherwise, the vertices may be in a scrambled order. Except for the origin, no vertex will be on the x-axis or the y-axis. No three vertices are colinear.

Output

The output lists the vertices of the given polygon, one vertex per line. Each vertex from the input appears exactly once in the output. The origin (0,0) is the vertex on the first line of the output. The order of vertices in the output will determine a trip taken along the polygon's border, in the counterclockwise direction. The output format for each vertex is (x,y) as shown below.

Sample Input

0 0
70 -50
60 30
-30 -50
80 20
50 -60
90 -20
-30 -40
-10 -60
90 10

Sample Output

(0,0)
(-30,-40)
(-30,-50)
(-10,-60)
(50,-60)
(70,-50)
(90,-20)
(90,10)
(80,20)
(60,30)
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
using namespace std; const int MAXN =55;
const double PI= acos(-1.0);
//精度
double eps=1e-8;
//避免出现-0.00情况,可以在最后加eps
//精度比较
int sgn(double x)
{
if(fabs(x)<=eps)return 0;
if(x<0)return -1;
return 1;
} //点的封装
struct Point
{
double x,y;
Point (){}
//赋值
Point (double _x,double _y)
{
x=_x;
y=_y;
}
//点相减
Point operator -(const Point &b)const
{
return Point (x-b.x,y-b.y);
}
//点积
double operator *(const Point &b)const
{
return x*b.x+y*b.y;
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
} ; //线的封装
struct Line
{
Point s,e;
Line (){}
Line (Point _s,Point _e)
{
s=_s;
e=_e;
}
//平行和重合判断 相交输出交点
//直线相交和重合判断,不是线段,
Point operator &(const Line &b)const{
Point res=b.s;
if(sgn((e-s)^(b.e-b.s))==0)
{
if(sgn((e-s)^(e-b.e))==0)
{
//重合
return Point(0,0);
}
else
{
//平行
return Point(0,0);
}
}
double t=((e-s)^(s-b.s))/((e-s)^(b.e-b.s));
res.x+=(b.e.x-b.s.x)*t;
res.y+=(b.e.y-b.s.y)*t;
return res;
}
}; //向量叉积
double xmult(Point p0,Point p1,Point p2)
{
return (p0-p1)^(p2-p1);
} //线段和线段非严格相交,相交时true
//此处是线段
bool seg_seg(Line l1,Line l2)
{
return sgn(xmult(l1.s,l2.s,l2.e)*xmult(l1.e,l2.s,l2.e))<=0&&sgn(xmult(l2.s,l1.s,l1.e)*xmult(l2.e,l1.s,l1.e))<=0;
} //两点之间的距离
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} //极角排序;对100个点进行极角排序
int pos;//极点下标
Point p[MAXN];
int Stack[MAXN],top;
bool cmp(Point a,Point b)
{
double tmp=sgn((a-p[pos])^(b-p[pos]));//按照逆时针方向进行排序
if(tmp==0)return dist(a,p[pos])<dist(b,p[pos]);
if(tmp<0)return false ;
return true;
}
void Graham(int n)
{
Point p0;
int k=0;
p0=p[0];
for(int i=1;i<n;i++)//找到最左下边的点
{
if(p0.y>p[i].y||(sgn(p0.y-p[i].y))==0&&p0.x>p[i].x)
{
p0=p[i];
k=i;
}
}
swap(p[k],p[0]);
sort(p+1,p+n,cmp);
if(n==1)
{
top=2;
Stack[0]=0;
return ;
}
if(n==2)
{
top=2;
Stack[0]=0;
Stack[1]=1;
return ;
}
Stack[0]=0;Stack[1]=1;
top=2;
for(int i=2;i<n;i++)
{
while(top>1&&sgn((p[Stack[top-1]]-p[Stack[top-2]])^(p[i]-p[Stack[top-2]]))<=0)
top--;
Stack[top++]=i;
}
} int main ()
{
int t=0;
while(~scanf("%lf%lf",&p[t].x,&p[t].y))
t++;
Graham(t);
for(int i=0;i<t;i++)
{
if(p[i].x==0&&p[i].y==0)
{
swap(p[i],p[0]);
break;
}
}
sort(p,p+t,cmp);
for(int i=0;i<t;i++)
printf("(%.f,%.f)\n",p[i].x,p[i].y);
return 0;
}

极角排序:

根据逆时针顺序进行排序

poj 2007 凸包构造和极角排序输出(模板题)的更多相关文章

  1. poj 2007 Scrambled Polygon(极角排序)

    http://poj.org/problem?id=2007 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6701   A ...

  2. poj 1696:Space Ant(计算几何,凸包变种,极角排序)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2876   Accepted: 1839 Descrip ...

  3. poj 1696 Space Ant (极角排序)

    链接:http://poj.org/problem?id=1696 Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  4. POJ 1696 Space Ant 【极角排序】

    题意:平面上有n个点,一只蚂蚁从最左下角的点出发,只能往逆时针方向走,走过的路线不能交叉,问最多能经过多少个点. 思路:每次都尽量往最外边走,每选取一个点后对剩余的点进行极角排序.(n个点必定能走完, ...

  5. POJ 1696 Space Ant(极角排序)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2489   Accepted: 1567 Descrip ...

  6. POJ 2280 Amphiphilic Carbon Molecules 极角排序 + 扫描线

    从TLE的暴力枚举 到 13313MS的扫描线  再到 1297MS的简化后的扫描线,简直感觉要爽翻啦.然后满怀欣喜的去HDU交了一下,直接又回到了TLE.....泪流满面 虽说HDU的时限是2000 ...

  7. 【计算几何】【凸包】【极角排序】【二分】Gym - 101128J - Saint John Festival

    平面上n个红点,m个黑点,问你多少个黑点至少在一个红三角形内. 对红点求凸包后,转化为询问有多少个黑点在凸包内. 点在凸多边形内部判定,选定一个凸包上的点作原点,对凸包三角剖分,将其他的点极角排序之后 ...

  8. poj 3683 2-sat建图+拓扑排序输出结果

    发现建图的方法各有不同,前面一题连边和这一题连边建图的点就不同,感觉这题的建图方案更好. 题意:给出每个婚礼的2个主持时间,每个婚礼的可能能会冲突,输出方案. 思路:n个婚礼,2*n个点,每组点是对称 ...

  9. POJ 1981 最大点覆盖问题(极角排序)

    Circle and Points Time Limit: 5000MS   Memory Limit: 30000K Total Submissions: 8346   Accepted: 2974 ...

随机推荐

  1. Windows 2008 Server R2双网卡负载均衡

    源文档 <http://blog.sina.com.cn/s/blog_6025f5690101apwd.html>

  2. Laya 断点调试

    Laya 打断点调试并查看堆栈的方法 发现直接加断点不行没办法调试,直接使用这中方法好像可以,选择F5调试 var camera =this.GameScene.getChildByName(&quo ...

  3. 【Flutter】可滚动组件之ListView

    前言 它可以沿一个方向线性排布所有子组件,并且它也可以支持基于Sliver的延迟构建模型. 接口描述 ListView({ Key key, // 可滚动widget公共参数 Axis scrollD ...

  4. LeetCode876 链表的中间结点

    给定一个带有头结点 head 的非空单链表,返回链表的中间结点. 如果有两个中间结点,则返回第二个中间结点. 示例 1: 输入:[1,2,3,4,5] 输出:此列表中的结点 3 (序列化形式:[3,4 ...

  5. Js中函数式编程的理解

    函数式编程的理解 函数式编程是一种编程范式,可以理解为是利用函数把运算过程封装起来,通过组合各种函数来计算结果.函数式编程与命令式编程最大的不同其实在于,函数式编程关心数据的映射,命令式编程关心解决问 ...

  6. 【Linux】ethtool 用法

    ethtool命令用于获取以太网卡的配置信息,或者修改这些配置.这个命令比较复杂,功能特别多. 语法 ethtool [ -a | -c | -g | -i | -d | -k | -r | -S | ...

  7. Jenkins自动部署spring boot

    Jenkins自动部署spring boot 背景介绍 本公司属于微小型企业,初期业务量不高,所有程序都写在一个maven项目里面,不过是多模块开发. 分了login模块,service模块,cms模 ...

  8. oracle dataguard搭建

    搭建前环境准备 1.查看主库的oracle的uid和gid并在备库创建用户 # 主库查看oracle $ id oracle uid=54321(oracle) gid=54321(oinstall) ...

  9. response返回特性

    1. response 返回特性 r=requests.get("http://www.baidu.com")print(r.text) #打印返回正文print(r.status ...

  10. codeup 1934 查找元素

    题目描述: 输入一个数n,然后输入n个数值各不相同,再输入一个值x,输出这个值在这个数组中的下标(从0开始,若不在数组中则输出-1. 输入: 测试数据有多组,输入n(1<=n<=200), ...