洛谷传送门

题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案

神题= =

搞了半天也没有想到切割顺序竟然和答案无关...我太弱了

证明很简单,就是乘法分配律,把式子展开就行了

定义$s_{i}$为序列$a$的前缀和,定义$f[k][i]$表示第$k$次切割是在第$i$个位置的后面,$f[k][i]=max(f[k-1][j]+(s_{i}-s_{j})*(s_{n}-s_{i}))$

展开式子,移项,发现$x$递增,斜率$k$也递增,用队列维护上凸包就行了

至于记录方案,另开一个数组,记录从哪转移来的就行了

复杂度$O(nk)$

又没长记性把$i$打成$j$了(捂脸)

 #include <cmath>
#include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 101000
#define M1 205
#define ll long long
#define dd double
#define uint unsigned int
#define idx(X) (X-'0')
using namespace std; int gint()
{
ll ret=;int fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
}
int n,K;
int a[N1];
ll sa[N1],f[][N1],x[N1],y[N1];
int fa[M1][N1];
int que[N1],ret[N1]; int main()
{
freopen("t2.in","r",stdin);
scanf("%d%d",&n,&K);
for(int i=;i<=n;i++)
a[i]=gint(),sa[i]=sa[i-]+a[i];
int now=,pst=;
for(int k=;k<=K;k++)
{
int hd=,tl=,j;
que[++tl]=;
for(int i=;i<n;i++)
{
while(hd+<=tl&&(y[que[hd+]]-y[que[hd]])>=-(x[que[hd+]]-x[que[hd]])*sa[i])
hd++;
j=que[hd];
f[now][i]=f[pst][j]+(sa[i]-sa[j])*(sa[n]-sa[i]);
fa[k][i]=j;
x[i]=sa[i],y[i]=f[pst][i]-sa[i]*sa[n];
while(hd+<=tl&&(y[i]-y[que[tl-]])*(x[que[tl]]-x[que[tl-]])>=(y[que[tl]]-y[que[tl-]])*(x[i]-x[que[tl-]]))
tl--;
que[++tl]=i;
}swap(now,pst);
}
ll ans=,id=;
for(int i=;i<n;i++)
if(f[pst][i]>ans)
ans=f[pst][i],id=i;
for(int k=K;k>=;k--)
ret[k]=id,id=fa[k][id];
printf("%lld\n",ans);
for(int k=;k<=K;k++)
printf("%d ",ret[k]);
puts("");
return ;
}

BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)的更多相关文章

  1. BZOJ 3675 APIO2014 序列切割 斜率优化DP

    题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...

  2. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  3. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  4. 【bzoj3675】[Apio2014]序列分割 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...

  5. BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )

    WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...

  6. 【斜率DP】BZOJ 3675:[Apio2014]序列分割

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1066  Solved: 427[Submit][Statu ...

  7. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

  8. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    题目链接 BZOJ 3675 首先最后的答案和分割的顺序是无关的, 那么就可以考虑DP了. 设$f[i][j]$为做了$i$次分割,考虑前$j$个数之后的最优答案. 那么$f[i][j] = max( ...

  9. bzoj 3675: [Apio2014]序列分割【斜率优化dp】

    首先看这个得分方式,容易发现就相当于分k段,每段的值和两两乘起来. 这样就很容易列出dp方程:设f[i][j]为到j分成分成i段,转移是 \[ f[i][j]=max { f[k][j]+s[k]*( ...

随机推荐

  1. reMarkable安装教程

    PS :每次都下一遍安装包挺无奈的...... 系统版本 :Ubuntu 16.04 安装包 :remarkable_1.87_all.deb 链接 Here!-> reMarkable 安装步 ...

  2. 【Codeforces Round #507 (Div. 2, based on Olympiad of Metropolises) A】Palindrome Dance

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] i从1..n/2循环一波. 保证a[i]和a[n-i+1]就好. 如果都是2的话填上min(a,b)*2就好 其他情况跟随非2的. ...

  3. 【codeforces 805C】Find Amir

    [题目链接]:http://codeforces.com/contest/805/problem/C [题意] 你能从任意一个位置i到达任意一个位置j; 花费为(i+j)%(n+1); 问你从任意一个 ...

  4. 洛谷—— P1262 间谍网络

    https://www.luogu.org/problem/show?pid=1262 题目描述 由于外国间谍的大量渗入,国家安全正处于高度的危机之中.如果A间谍手中掌握着关于B间谍的犯罪证据,则称A ...

  5. __FUNCTION__, __LINE__ 有助于debug的宏定义

    __FUNCTION__, __LINE__ 今天无意之间看到一段代码,里面有这样一个片段: if (!interface) { err ("%s - error, can't find d ...

  6. emacs使用本地emacs server模式打开远程文件

    使用emacs的用户都知道,一般要打开远程机器上的文件要使用TrampMode模式,调用方式例如以下: C-x C-f /remotehost:filename RET (or /method:use ...

  7. Spring MVC学习------------核心类与接口

    核心类与接口: 先来了解一下,几个重要的接口与类. 如今不知道他们是干什么的没关系,先混个脸熟,为以后认识他们打个基础. DispatcherServlet   -- 前置控制器 HandlerMap ...

  8. 2014.04.17,转帖,关于FFT的结果为什么要除以N

    http://www.chinavib.com/forum/viewthread.php?tid=23665&highlight= 关于这个问题,我看到的书好像都没有进行解释,这里我试着解释下 ...

  9. 基于FPGA的VGA可移植模块终极设计

    一.VGA的诱惑 首先,VGA的驱动,这事,一般的单片机是办不到的:由于FPGA的速度,以及并行的优势,加上可现场配置的优势,VGA的配置,只有俺们FPGA可以胜任,也只有FPGA可以随心所欲地配置( ...

  10. 0x26 广搜变形

    电路维修 这道题虽然乍一看就会想斜对角的两点之间边权受初始电路的影响要么为0要么为1,但是有一个思考点就是可以通过奇偶性,证明相邻的两个点是不可能在同一个电路中.练习一下双端队列. #include& ...