一、 数据准备

本文主要介绍 Spark SQL 的多表连接,需要预先准备测试数据。分别创建员工和部门的 Datafame,并注册为临时视图,代码如下:

val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate()

val empDF = spark.read.json("/usr/file/json/emp.json")
empDF.createOrReplaceTempView("emp") val deptDF = spark.read.json("/usr/file/json/dept.json")
deptDF.createOrReplaceTempView("dept")

两表的主要字段如下:

emp 员工表
|-- ENAME: 员工姓名
|-- DEPTNO: 部门编号
|-- EMPNO: 员工编号
|-- HIREDATE: 入职时间
|-- JOB: 职务
|-- MGR: 上级编号
|-- SAL: 薪资
|-- COMM: 奖金
dept 部门表
|-- DEPTNO: 部门编号
|-- DNAME: 部门名称
|-- LOC: 部门所在城市

注:emp.json,dept.json 可以在本仓库的resources 目录进行下载。

二、连接类型

Spark 中支持多种连接类型:

  • Inner Join : 内连接;
  • Full Outer Join : 全外连接;
  • Left Outer Join : 左外连接;
  • Right Outer Join : 右外连接;
  • Left Semi Join : 左半连接;
  • Left Anti Join : 左反连接;
  • Natural Join : 自然连接;
  • Cross (or Cartesian) Join : 交叉 (或笛卡尔) 连接。

其中内,外连接,笛卡尔积均与普通关系型数据库中的相同,如下图所示:

这里解释一下左半连接和左反连接,这两个连接等价于关系型数据库中的 INNOT IN 字句:

-- LEFT SEMI JOIN
SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno
-- 等价于如下的 IN 语句
SELECT * FROM emp WHERE deptno IN (SELECT deptno FROM dept) -- LEFT ANTI JOIN
SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno
-- 等价于如下的 IN 语句
SELECT * FROM emp WHERE deptno NOT IN (SELECT deptno FROM dept)

所有连接类型的示例代码如下:

2.1 INNER JOIN

// 1.定义连接表达式
val joinExpression = empDF.col("deptno") === deptDF.col("deptno")
// 2.连接查询
empDF.join(deptDF,joinExpression).select("ename","dname").show() // 等价 SQL 如下:
spark.sql("SELECT ename,dname FROM emp JOIN dept ON emp.deptno = dept.deptno").show()

2.2 FULL OUTER JOIN

empDF.join(deptDF, joinExpression, "outer").show()
spark.sql("SELECT * FROM emp FULL OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.3 LEFT OUTER JOIN

empDF.join(deptDF, joinExpression, "left_outer").show()
spark.sql("SELECT * FROM emp LEFT OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.4 RIGHT OUTER JOIN

empDF.join(deptDF, joinExpression, "right_outer").show()
spark.sql("SELECT * FROM emp RIGHT OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.5 LEFT SEMI JOIN

empDF.join(deptDF, joinExpression, "left_semi").show()
spark.sql("SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno").show()

2.6 LEFT ANTI JOIN

empDF.join(deptDF, joinExpression, "left_anti").show()
spark.sql("SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno").show()

2.7 CROSS JOIN

empDF.join(deptDF, joinExpression, "cross").show()
spark.sql("SELECT * FROM emp CROSS JOIN dept ON emp.deptno = dept.deptno").show()

2.8 NATURAL JOIN

自然连接是在两张表中寻找那些数据类型和列名都相同的字段,然后自动地将他们连接起来,并返回所有符合条件的结果。

spark.sql("SELECT * FROM emp NATURAL JOIN dept").show()

以下是一个自然连接的查询结果,程序自动推断出使用两张表都存在的 dept 列进行连接,其实际等价于:

spark.sql("SELECT * FROM emp JOIN dept ON emp.deptno = dept.deptno").show()

由于自然连接常常会产生不可预期的结果,所以并不推荐使用。

三、连接的执行

在对大表与大表之间进行连接操作时,通常都会触发 Shuffle Join,两表的所有分区节点会进行 All-to-All 的通讯,这种查询通常比较昂贵,会对网络 IO 会造成比较大的负担。

而对于大表和小表的连接操作,Spark 会在一定程度上进行优化,如果小表的数据量小于 Worker Node 的内存空间,Spark 会考虑将小表的数据广播到每一个 Worker Node,在每个工作节点内部执行连接计算,这可以降低网络的 IO,但会加大每个 Worker Node 的 CPU 负担。

是否采用广播方式进行 Join 取决于程序内部对小表的判断,如果想明确使用广播方式进行 Join,则可以在 DataFrame API 中使用 broadcast 方法指定需要广播的小表:

empDF.join(broadcast(deptDF), joinExpression).show()

参考资料

  1. Matei Zaharia, Bill Chambers . Spark: The Definitive Guide[M] . 2018-02

系列传送门

入门大数据---SparkSQL联结操作的更多相关文章

  1. 入门大数据---SparkSQL外部数据源

    一.简介 1.1 多数据源支持 Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JD ...

  2. 入门大数据---SparkSQL常用聚合函数

    一.简单聚合 1.1 数据准备 // 需要导入 spark sql 内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSe ...

  3. 入门大数据---MapReduce-API操作

    一.环境 Hadoop部署环境: Centos3.10.0-327.el7.x86_64 Hadoop2.6.5 Java1.8.0_221 代码运行环境: Windows 10 Hadoop 2.6 ...

  4. 入门大数据---Spark整体复习

    一. Spark简介 1.1 前言 Apache Spark是一个基于内存的计算框架,它是Scala语言开发的,而且提供了一站式解决方案,提供了包括内存计算(Spark Core),流式计算(Spar ...

  5. 入门大数据---Spark_RDD

    一.RDD简介 RDD 全称为 Resilient Distributed Datasets,是 Spark 最基本的数据抽象,它是只读的.分区记录的集合,支持并行操作,可以由外部数据集或其他 RDD ...

  6. 入门大数据---Flink学习总括

    第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高 ...

  7. Dapper学习(四)之Dapper Plus的大数据量的操作

    这篇文章主要讲 Dapper Plus,它使用用来操作大数量的一些操作的.比如插入1000条,或者10000条的数据时,再使用Dapper的Execute方法,就会比较慢了.这时候,可以使用Dappe ...

  8. 入门大数据---Spark_Streaming整合Flume

    一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 ...

  9. 入门大数据---安装ClouderaManager,CDH和Impala,Hue,oozie等服务

    1.要求和支持的版本 (PS:我使用的环境,都用加粗标识了.) 1.1 支持的操作系统版本 操作系统 版本 RHEL/CentOS/OL with RHCK kernel 7.6, 7.5, 7.4, ...

随机推荐

  1. 【JVM】GCRoots和JVM的参数配置

    如何理解GCRoots? 为了解决引用计数法的循环引用问题,Java使用了可达性分析的方法.GC Roots是一组活跃的引用,通过一系列名为GC Roots的对象作为起始点,沿着该对象向下搜索,如果一 ...

  2. 前端HTML 定位position 绝对定位 相对定位

    >>>position:absolute;绝对定位 当前元素相对于父级元素位置[该父级元素必须也设定了position,不然会继续往上找祖先元素,直到body为止]的定位 >& ...

  3. (Java实现) 洛谷 P1319 压缩技术

    题目描述 设某汉字由N X N的0和1的点阵图案组成,如下图.我们依照以下规则生成压缩码.连续一组数值:从汉字点阵图案的第一行第一个符号开始计算,按书写顺序从左到右,由上至下.第一个数表示连续有几个0 ...

  4. Java实现 LeetCode 670 最大交换(暴力)

    670. 最大交换 给定一个非负整数,你至多可以交换一次数字中的任意两位.返回你能得到的最大值. 示例 1 : 输入: 2736 输出: 7236 解释: 交换数字2和数字7. 示例 2 : 输入: ...

  5. Java实现 LeetCode 664 奇怪的打印机(DFS)

    664. 奇怪的打印机 有台奇怪的打印机有以下两个特殊要求: 打印机每次只能打印同一个字符序列. 每次可以在任意起始和结束位置打印新字符,并且会覆盖掉原来已有的字符. 给定一个只包含小写英文字母的字符 ...

  6. Java实现 LeetCode 611 有效三角形的个数(双指针)

    611. 有效三角形的个数 给定一个包含非负整数的数组,你的任务是统计其中可以组成三角形三条边的三元组个数. 示例 1: 输入: [2,2,3,4] 输出: 3 解释: 有效的组合是: 2,3,4 ( ...

  7. Java实现 蓝桥杯VIP 算法提高 夺宝奇兵

    算法提高 夺宝奇兵 时间限制:1.0s 内存限制:512.0MB [题目描述] 在一座山上,有很多很多珠宝,它们散落在山底通往山顶的每条道路上,不同道路上的珠宝的数目也各不相同.下图为一张藏宝地图: ...

  8. 第八届蓝桥杯JavaC组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.外星日历 题目描述 某星系深处发现了文明遗迹. 他们的计数也是用十进制. 他们的文明也有日历.日历只有天数,没有年.月的概念. 有趣的 ...

  9. java实现第六届蓝桥杯隔行变色

    隔行变色 隔行变色 Excel表的格子很多,为了避免把某行的数据和相邻行混淆,可以采用隔行变色的样式. 小明设计的样式为:第1行蓝色,第2行白色,第3行蓝色,第4行白色,- 现在小明想知道,从第21行 ...

  10. Python数据分析软件包介绍

    Python数据分析主要软件包: 1.python -m pip install numpy 2.python -m pip install pandas 3.python -m pip instal ...