Ng I., Fang Z., Zhu S., Chen Z. and Wang J. Masked Gradient-Based Causal Structure Learning. arXiv preprint arXiv:1911.10500, 2019.

非线性, 自动地学习因果图.

主要内容

NOTEARS将有向无环图凝练成了易处理的条件, 本文将这种思想扩展至非线性的情况:

\[X_i = f_i(X_{\mathrm{pa}(i)}) + \epsilon_i,
\]

其中\(X_i\)是因果图的结点, \(X_{\mathrm{pa}(i)}\)是其父结点, \(\epsilon\)是无关的噪声.

上述等式等价于

\[X_i = f_i(A_i \circ X) + \epsilon_i,
\]

\(A_i\)是邻接矩阵\(A=[A_1|A_2|\cdots|A_d] \in \{0, 1\}^{d\times d}\)的第i列, \(A_{ij}=1\)表示结点\(X_i\)直接作用于\(X_j\).

所以本文的目标就可以转换为如何估计\(A\)(实际上有了\(A\)也就知道了因果图了). \(A\)应当满足的条件:

  1. \(A\) 能够表示有向无环图;
  2. \(X_i\) 和 \(f(A_i \circ X)\)必须接近, 比如用常见的
\[\|X_i - f(A_i \circ X)\|_2^2
\]

来度量.

直接处理非常麻烦, 首先对上面的问题进行放松, 等价于

\[X_i = f_i(W_i \circ X) + \epsilon_i,
\]

此时\(A = \mathcal{A}(W)\), 即

\[W_{ij} \not = 0 \rightarrow A_{ij} = 1;
W_{ij} = 0 \rightarrow A_{ij} = 0.
\]

本文更进一步, 令

\[W = g_{\tau}(U), \quad U \in \mathbb{R}^{d \times d}.
\]
\[[g_{\tau}(U)]_{ij} = \sigma((u_{ij} + g) / \tau) = \frac{1}{1 + \exp(-(u_{ij}+ (g_1 - g_0)) / \tau)},
\]

其中

\[g = g_1 - g_0, \: g_i \mathop{\sim}\limits^{i.i.d.} \mathrm{Gumbel}(0, 1).
\]

注: Gumbel.

此类操作能保证\(g_{\tau}(U) \in (0, 1)^{d\times d}\), 此时能够把\([g_{\tau}(U)]_{ij}\)看成是\(X_i\), \(X_j\)的关系的紧密型的度量, 在这种情况下

\[[g_{\tau}(U)]_{ij} \le \omega \Rightarrow A_{ij} = 0.
\]

或许会问, 为什么不用sigmoid而用一个这么麻烦的东西, 原因是当\(\tau\)足够小的时候(如本文取的0.2), \([g_{\tau}(U)]_{ij}\)非常接近\(0\)或者\(1\), 而用sigmoid, 作者发现这些值都接近0, 不能很好的模拟有向无环图, 故采用了这个方案.

接下来, 只需要满足

\[\mathbb{E}[\mathrm{tr}(e^{g_{\tau}(U)}) - d] = 0,
\]

即可保证\(g_{\tau}(U)\)能够代表有效无环图. 在实际中, 只需

\[\mathbb{E}[\mathrm{tr}(e^{g_{\tau}(U)}) - d] \le \xi.
\]

注: 期望是关于\(g\)的.

最终的目标

总结下来,

\[\min_{U, \theta} \quad \mathbb{E}_g[\frac{1}{2n} \sum_{k=1}^n \mathcal{L}(x^{(k)}, f(g_{\tau}, x^{(k)}; \theta))] \\
\mathrm{s.t.} \quad \mathbb{E}_g[\mathrm{tr}(e^{g_{\tau}(U)}) - d] \le \xi.
\]

注: \(\mathbb{E}\)是关于\(g\)的, \(n\)的观测数据的总数.

进一步地, 我们希望\(g_{\tau}\)是稀疏的, 故加上正则化项:

\[\min_{U, \theta} \quad \mathbb{E}_g[\frac{1}{2n} \sum_{k=1}^n \mathcal{L}(x^{(k)}, f(g_{\tau}, x^{(k)}; \theta)) + \lambda \|g_{\tau}(U)\|_1] \\
\mathrm{s.t.} \quad \mathbb{E}_g[\mathrm{tr}(e^{g_{\tau}(U)}) - d] \le \xi.
\]

利用augmented Lagrange multiplier, 可得

\[L_p(U, \phi, \alpha) =
\mathbb{E}_g[\frac{1}{2n} \sum_{k=1}^n \mathcal{L}(x^{(k)}, f(g_{\tau}, x^{(k)}; \theta)) + \lambda \|g_{\tau}(U)\|_1 + \alpha h(U)] + \frac{\rho}{2} (\mathbb{E}[h(U)])^2,
\]

其中\(h(U):= \mathrm{tr}(e^{g_{\tau}(U)}) - d\).

采用分布更新:

\[U^{t+1}, \theta^{t+1} = \arg \min_{U, \theta} L_{\rho^t}(U, \phi, \alpha^t); \\
\alpha^{t+1} = \alpha^t + \rho^t \mathbb{E}[h(U^{t+1})]; \\
\rho^{t+1} = \left \{
\begin{array}{ll}
\beta \rho^t, & \mathrm{if} \: \mathbb{E}[h(U^{t+1})] \ge \gamma \mathbb{E}[h(U^t)], \\
\rho^t, & \mathrm{otherwise}.
\end{array} \right .
\]

其中第一步使用Adam执行1000次迭代计算的.

文中还讨论了后处理的一些方法, 和\(A\)是否唯一.

代码

GES and PC

CAM

NOTEARS

DAG-GNN

GraN-DAG

Masked Gradient-Based Causal Structure Learning的更多相关文章

  1. FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?

    FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MIN ...

  2. 201904Online Human Action Recognition Based on Incremental Learning of Weighted Covariance Descriptors

    论文标题:Online Human Action Recognition Based on Incremental Learning of Weighted Covariance Descriptor ...

  3. Survey of single-target visual tracking methods based on online learning 翻译

    基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简 ...

  4. DAG-GNN: DAG Structure Learning with Graph Neural Networks

    目录 概 主要内容 代码 Yu Y., Chen J., Gao T. and Yu M. DAG-GNN: DAG structure learning with graph neural netw ...

  5. DAGs with NO TEARS: Continuous Optimization for Structure Learning

    DAGs with NO TEARS: Continuous Optimization for Structure Learning 目录 DAGs with NO TEARS: Continuous ...

  6. 论文解读(SUBLIME)《Towards Unsupervised Deep Graph Structure Learning》

    论文信息 论文标题:Towards Unsupervised Deep Graph Structure Learning论文作者:Yixin Liu, Yu Zheng, Daokun Zhang, ...

  7. 论文翻译:2020_A Robust and Cascaded Acoustic Echo Cancellation Based on Deep Learning

    论文地址:https://indico2.conference4me.psnc.pl/event/35/contributions/3364/attachments/777/815/Thu-1-10- ...

  8. 机器学习 —— 概率图模型(Homework: Structure Learning)

    概率图的学习真的要接近尾声了啊,了解的越多越发感受到它的强大.这周的作业本质上是data mining.从数据中学习PGM的结构和参数,完全使用数据驱动 —— No structure, No par ...

  9. Video Target Tracking Based on Online Learning—TLD单目标跟踪算法详解

    视频目标跟踪问题分析         视频跟踪技术的主要目的是从复杂多变的的背景环境中准确提取相关的目标特征,准确地识别出跟踪目标,并且对目标的位置和姿态等信息精确地定位,为后续目标物体行为分析提供足 ...

随机推荐

  1. ping (网络诊断工具)

    Ping是Windows.Unix和Lnix系统下的一个命令,ping也属于一个通信协议,是TCP/IP协议的一部分,利用Ping命令可以检查网络是否连通,可以很好地帮助我们分析和判定网络故障.应用格 ...

  2. LINUX 系统性能检测工具vmstat

    vmstat 有2个参数,第一个是采样时间间隔(单位是s),第二个参数是采样个数. #表示 2s采样一次,一共采样2次 vmstat 2 2 也可以只写第一个参数,让系统一直采样直到停止(ctrl + ...

  3. ORACLE 获取执行计划的方法

    一.获取执行计划的6种方法(详细步骤已经在每个例子的开头注释部分说明了): 1. explain plan for获取: 2. set autotrace on : 3. statistics_lev ...

  4. Spring Cloud集成RabbitMQ的使用

    同步 or 异步 前言:我们现在有一个用微服务架构模式开发的系统,系统里有一个商品服务和订单服务,且它们都是同步通信的. 目前我们商品服务和订单服务之间的通信方式是同步的,当业务扩大之后,如果还继续使 ...

  5. 网页设计单位 px,em,rem,vm,vh,%

    px(pixels) 像素 (px) 是一种绝对单位,因为无论其他相关的设置怎么变化,像素指定的值是不会变化的. px就是设备或者图片最小的一个点,比如常常听到的电脑像素是1024x768的,表示的是 ...

  6. @Conditional 注解,基于条件实例对象

    .catalogue-div { position: relative; background-color: rgba(255, 255, 255, 1); right: 0 } .catalogue ...

  7. 3.使用Spring Data ElasticSearch操作ElasticSearch(5.6.8版本)

    1.引入maven坐标 <!--spring-data-elasticsearch--><dependency> <groupId>org.springframew ...

  8. Spring AOP通过注解的方式设置切面和切入点

    切面相当于一个功能的某一个类,切入点是这个类的某部分和需要额外执行的其他代码块,这两者是多对多的关系,在代码块处指定执行的条件. Aspect1.java package com.yh.aop.sch ...

  9. python中的虚拟环境(在jupyter和pycharm中的使用)

    1.通过anaconda新建虚拟环境 创建虚拟环境:conda create -n your_env_name python=3.6 激活虚拟环境:activate your_env_name(虚拟环 ...

  10. 利用代码覆盖率提高嵌入式软件的可靠性 - VectorCAST

    简介 代码覆盖率是衡量软件测试完成情况的指标,通常基于测试过程中已检查的程序源代码比例 计算得出.代码覆盖率可以有效避免包含未测试代码的程序被发布. 代码覆盖率能不能提高软件的可靠性?答案是肯定的,代 ...