空间消耗非常玄学,有多大开多大就完事了。其实是因为单次操作可能会有数次Merge和Split操作,按照下面的版本的话Merge和Split都进行复制,所以一次操作可能复制了4个版本。

四个函数式查询,然后Merge的时候拷贝对应的xy子树,Split的时候拷贝p树。事实上,Merge和Split总是成对出现,只需要在其中喜欢的一个进行可持久化(复制节点)就可以了,比较推荐在Split的时候复制节点。这样单次操作大概复制2个版本。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define ls(p) ch[p][0]
#define rs(p) ch[p][1] const int MAXN = 30000000 + 5;
int val[MAXN], ch[MAXN][2], rnd[MAXN], siz[MAXN], tot, root[MAXN]; void Init() {
tot = 0;
memset(root,0,sizeof(root));
} int NewNode(int v) {
++tot;
ch[tot][0] = ch[tot][1] = 0;
val[tot] = v, rnd[tot] = rand();
siz[tot] = 1;
return tot;
} int CopyNode(int p) {
++tot;
ch[tot][0] = ch[p][0];
ch[tot][1] = ch[p][1];
val[tot] = val[p];
rnd[tot] = rnd[p];
siz[tot] = siz[p];
return tot;
} void PushUp(int p) {
siz[p] = siz[ls(p)] + siz[rs(p)] + 1;
} void SplitValue(int p, int v, int &x, int &y) {
if(!p) {
x = y = 0;
return;
}
if(v < val[p]) {
y = CopyNode(p);
SplitValue(ls(y), v, x, ls(y));
PushUp(y);
} else {
x = CopyNode(p);
SplitValue(rs(x), v, rs(x), y);
PushUp(x);
}
} /*void SplitRank(int p, int rk, int &x, int &y) {
if(!p) {
x = y = 0;
return;
}
if(rk <= siz[ls(p)]) {
y = p;
SplitRank(ls(p), rk, x, ls(p));
PushUp(y);
} else {
x = p;
SplitRank(rs(p), rk - siz[ls(p)] - 1, rs(p), y);
PushUp(x);
}
}*/ int Merge(int x, int y) {
if(!x || !y)
return x | y;
if(rnd[x] < rnd[y]) {
int p = CopyNode(x);
rs(p) = Merge(rs(p), y);
PushUp(p);
return p;
} else {
int p = CopyNode(y);
ls(p) = Merge(x, ls(p));
PushUp(p);
return p;
}
} void Insert(int &root, int v) {
int x = 0, y = 0;
SplitValue(root, v, x, y);
root = Merge(Merge(x, NewNode(v)), y);
} void Remove(int &root, int v) {
int x = 0, y = 0, z = 0;
SplitValue(root, v, x, z);
SplitValue(x, v - 1, x, y);
y = Merge(ls(y), rs(y));
root = Merge(Merge(x, y), z);
} int GetRank2(int p, int v) {
int rk = 1;
while(p) {
if(v < val[p])
p = ls(p);
else if(v == val[p])
p = ls(p);
else {
rk += siz[ls(p)] + 1;
p = rs(p);
}
}
return rk;
} int GetValue2(int p, int rk) {
while(p) {
if(rk <= siz[ls(p)])
p = ls(p);
else if(rk == siz[ls(p)] + 1)
return val[p];
else {
rk -= siz[ls(p)] + 1;
p = rs(p);
}
}
} int GetPrev2(int p, int v) {
int prev;
while(p) {
if(v <= val[p])
p = ls(p);
else {
prev = val[p];
p = rs(p);
}
}
return prev;
} int GetNext2(int p, int v) {
int next;
while(p) {
if(v < val[p]) {
next = val[p];
p = ls(p);
} else
p = rs(p);
}
return next;
} int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int n;
scanf("%d", &n);
Init();
for(int i = 1; i <= n; ++i) {
int v,op, x;
scanf("%d%d%d",&v, &op, &x);
root[i]=root[v];
switch(op) {
case 1:
Insert(root[i], x);
break;
case 2:
Remove(root[i], x);
break;
case 3:
printf("%d\n", GetRank2(root[i], x));
break;
case 4:
printf("%d\n", GetValue2(root[i], x));
break;
case 5:
printf("%d\n", GetPrev2(root[i], x));
break;
case 6:
printf("%d\n", GetNext2(root[i], x));
break;
}
}
return 0;
}
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define ls(p) ch[p][0]
#define rs(p) ch[p][1] const int MAXN = 20000000 + 5;
int val[MAXN], ch[MAXN][2], rnd[MAXN], siz[MAXN], tot, root[MAXN]; void Init() {
tot = 0;
memset(root,0,sizeof(root));
} int NewNode(int v) {
++tot;
ch[tot][0] = ch[tot][1] = 0;
val[tot] = v, rnd[tot] = rand();
siz[tot] = 1;
return tot;
} int CopyNode(int p) {
++tot;
ch[tot][0] = ch[p][0];
ch[tot][1] = ch[p][1];
val[tot] = val[p];
rnd[tot] = rnd[p];
siz[tot] = siz[p];
return tot;
} void PushUp(int p) {
siz[p] = siz[ls(p)] + siz[rs(p)] + 1;
} void SplitValue(int p, int v, int &x, int &y) {
if(!p) {
x = y = 0;
return;
}
if(v < val[p]) {
y = CopyNode(p);
SplitValue(ls(y), v, x, ls(y));
PushUp(y);
} else {
x = CopyNode(p);
SplitValue(rs(x), v, rs(x), y);
PushUp(x);
}
} /*void SplitRank(int p, int rk, int &x, int &y) {
if(!p) {
x = y = 0;
return;
}
if(rk <= siz[ls(p)]) {
y = p;
SplitRank(ls(p), rk, x, ls(p));
PushUp(y);
} else {
x = p;
SplitRank(rs(p), rk - siz[ls(p)] - 1, rs(p), y);
PushUp(x);
}
}*/ int Merge(int x, int y) {
if(!x || !y)
return x | y;
if(rnd[x] < rnd[y]) {
//int p = CopyNode(x);
int p=x;
rs(p) = Merge(rs(p), y);
PushUp(p);
return p;
} else {
int p=y;
//int p = CopyNode(y);
ls(p) = Merge(x, ls(p));
PushUp(p);
return p;
}
} void Insert(int &root, int v) {
int x = 0, y = 0;
SplitValue(root, v, x, y);
root = Merge(Merge(x, NewNode(v)), y);
} void Remove(int &root, int v) {
int x = 0, y = 0, z = 0;
SplitValue(root, v, x, z);
SplitValue(x, v - 1, x, y);
y = Merge(ls(y), rs(y));
root = Merge(Merge(x, y), z);
} int GetRank2(int p, int v) {
int rk = 1;
while(p) {
if(v < val[p])
p = ls(p);
else if(v == val[p])
p = ls(p);
else {
rk += siz[ls(p)] + 1;
p = rs(p);
}
}
return rk;
} int GetValue2(int p, int rk) {
while(p) {
if(rk <= siz[ls(p)])
p = ls(p);
else if(rk == siz[ls(p)] + 1)
return val[p];
else {
rk -= siz[ls(p)] + 1;
p = rs(p);
}
}
} int GetPrev2(int p, int v) {
int prev;
while(p) {
if(v <= val[p])
p = ls(p);
else {
prev = val[p];
p = rs(p);
}
}
return prev;
} int GetNext2(int p, int v) {
int next;
while(p) {
if(v < val[p]) {
next = val[p];
p = ls(p);
} else
p = rs(p);
}
return next;
} int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int n;
scanf("%d", &n);
Init();
for(int i = 1; i <= n; ++i) {
int v,op, x;
scanf("%d%d%d",&v, &op, &x);
root[i]=root[v];
switch(op) {
case 1:
Insert(root[i], x);
break;
case 2:
Remove(root[i], x);
break;
case 3:
printf("%d\n", GetRank2(root[i], x));
break;
case 4:
printf("%d\n", GetValue2(root[i], x));
break;
case 5:
printf("%d\n", GetPrev2(root[i], x));
break;
case 6:
printf("%d\n", GetNext2(root[i], x));
break;
}
}
return 0;
}

模板 - 可持久化无旋Treap的更多相关文章

  1. 模板 - 数据结构 - 可持久化无旋Treap/PersistentFHQTreap

    有可能当树中有键值相同的节点时,貌似是要对Split和Merge均进行复制的,本人实测:只在Split的时候复制得到了一个WA,但只在Merge的时候复制还是AC,可能是恰好又躲过去了.有人说假如确保 ...

  2. 无旋Treap - BZOJ1014火星人 & 可持久化版文艺平衡树

    !前置技能&概念! 二叉搜索树 一棵二叉树,对于任意子树,满足左子树中的任意节点对应元素小于根的对应元素,右子树中的任意节点对应元素大于根对应元素.换言之,就是满足中序遍历为依次访问节点对应元 ...

  3. 无旋treap的简单思想以及模板

    因为学了treap,不想弃坑去学splay,终于理解了无旋treap... 好像普通treap没卵用...(再次大雾) 简单说一下思想免得以后忘记.普通treap因为带旋转操作似乎没卵用,而无旋tre ...

  4. 模板 - 无旋Treap

    一般而言作为一棵平衡树只需要插入,删除,值求排名,排名求值,前驱,后继,六个接口. #include<bits/stdc++.h> using namespace std; typedef ...

  5. 洛谷 - P3391 【模板】文艺平衡树(Splay) - 无旋Treap

    https://www.luogu.org/problem/P3391 使用无旋Treap维护序列,注意的是按顺序插入的序列,所以Insert实际上简化成直接root和Merge合并,但是假如要在序列 ...

  6. 浅谈无旋treap(fhq_treap)

    一.简介 无旋Treap(fhq_treap),是一种不用旋转的treap,其代码复杂度不高,应用范围广(能代替普通treap和splay的所有功能),是一种极其强大的平衡树. 无旋Treap是一个叫 ...

  7. [转载]无旋treap:从好奇到入门(例题:bzoj3224 普通平衡树)

    转载自ZZH大佬,原文:http://www.cnblogs.com/LadyLex/p/7182491.html 今天我们来学习一种新的数据结构:无旋treap.它和splay一样支持区间操作,和t ...

  8. [您有新的未分配科技点]无旋treap:从好奇到入门(例题:bzoj3224 普通平衡树)

    今天我们来学习一种新的数据结构:无旋treap.它和splay一样支持区间操作,和treap一样简单易懂,同时还支持可持久化. 无旋treap的节点定义和treap一样,都要同时满足树性质和堆性质,我 ...

  9. 【算法学习】Fhq-Treap(无旋Treap)

    Treap——大名鼎鼎的随机二叉查找树,以优异的性能和简单的实现在OIer们中广泛流传. 这篇blog介绍一种不需要旋转操作来维护的Treap,即无旋Treap,也称Fhq-Treap. 它的巧妙之处 ...

随机推荐

  1. Python中的网络扫描大杀器Scapy初探

    Python中的网络扫描大杀器Scapy初探     最近经历了Twisted的打击,这个网络编程实在看不懂,都摸不透它的内在逻辑,看来网络编程不是那么好弄的.还好,看到了scapy,这种网络的大杀器 ...

  2. OCP

    desc dba_objects; select * from dba_objects where rownum = 6; select owner, object_id from dba_objec ...

  3. 《转》tensorflow学习笔记

    from http://m.blog.csdn.net/shengshengwang/article/details/75235860 1. RNN结构 解析: (1)one to one表示单输入单 ...

  4. handy源码阅读(六):udp类

    分为UdpServer类和UdpConn类. struct UdpServer : public std::enable_shared_from_this<UdpServer>, priv ...

  5. postman-鉴权

    概念 Cookie和鉴权的区别,cookie一般指缓存在本地的数据:鉴权一般指验证用户是否拥有访问系统的权利 鉴权分类 Basic auth:基础鉴权,数据没有加密可明文显示,一般在测试环境使用,不在 ...

  6. echart-如何画自定义的图形,三角形为例

  7. vi set the tab width for python

    Put your desired settings in the ~/.vimrc file -- See below for some guidelines and best practices. ...

  8. BZOJ 1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 网络流 + 二分答案

    Description Farmer John is constructing a new milking machine and wishes to keep it secret as long a ...

  9. Spring Cloud Commons教程(一)普通抽象

    诸如服务发现,负载平衡和断路器之类的模式适用于所有Spring Cloud客户端可以独立于实现(例如通过Eureka或Consul发现)的消耗的共同抽象层. @EnableDiscoveryClien ...

  10. Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...