传送门


解题思路

很长的题,实际上在一个有向图(点有点权)中求一个从起点1到终点n的路径,使得这条路径上点权最大的点与点权最小的点的差值最大(要求必须从点权较小的点能够走到点权较大的点)。

——最短路??

——不像呀。

(可是洛谷标签上写着呀)

就是一个写起来像最短路的一个图中的dp。

我们用dis1[i]表示从1号点到第i号点的路径上的最小值,用dis2[i]表示从i号点到第n号点的最大值,最后只需要找出最大的(dis2[i]-dis1[i])即可。

怎么求dis2呢?这里有一种方法——建反图。

建反图就是把每一条有向边反过来,例如原来是u-->v,现在变成了v-->u。

然后从n开始,跑一遍n到各个点的最短路,求出dis2数组。

对于dis数组,dis[i的儿子k]=dis[i],v[k](k号点本身的数值),dis[k]中的最小值/最大值。

用dijkstra或者spfa跑一遍图就可以了。

当年,spfa还没有死去。

AC代码

 #include<iostream>
#include<queue>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=;
const int maxm=;//注意有可能是双向边,所以要开两倍的数组。
int n,m,p1[maxn],p2[maxn],cnt1,cnt2,vis[maxn],dis1[maxn],dis2[maxn],ans,v[maxn];
struct edge{
int v,next;
}e1[maxm],e2[maxm]; //两个图
void insert1(int u,int v){ //两个insert
cnt1++;
e1[cnt1].v=v;
e1[cnt1].next=p1[u];
p1[u]=cnt1;
}
void insert2(int u,int v){
cnt2++;
e2[cnt2].v=v;
e2[cnt2].next=p2[u];
p2[u]=cnt2;
}
struct node{
int num,len;
};
bool operator < (node a,node b){
return a.len>b.len;
}
priority_queue<node> q1,q2;
void dijkstra1(){ //两个dijkstra
memset(vis,,sizeof(vis));
memset(dis1,0x3f,sizeof(dis1));
dis1[]=v[];
node nd;
nd.len=v[];
nd.num=;
q1.push(nd);
while(!q1.empty()){
node u=q1.top();
q1.pop();
if(vis[u.num]) continue;
vis[u.num]=;
for(int i=p1[u.num];i!=-;i=e1[i].next){
dis1[e1[i].v]=min(min(dis1[e1[i].v],u.len),v[e1[i].v]);//算是个小的dp吧
node xin;
xin.num=e1[i].v;
xin.len=dis1[e1[i].v];
q1.push(xin);
}
}
}
void dijkstra2(){
memset(vis,,sizeof(vis));
memset(dis2,-0x3f,sizeof(dis2));
dis2[n]=v[n];
node nd;
nd.len=v[n];
nd.num=n;
q2.push(nd);
while(!q2.empty()){
node u=q2.top();
q2.pop();
if(vis[u.num]) continue;
vis[u.num]=;
for(int i=p2[u.num];i!=-;i=e2[i].next){
dis2[e2[i].v]=max(max(dis2[e2[i].v],u.len),v[e2[i].v]);
node xin;
xin.num=e2[i].v;
xin.len=dis2[e2[i].v];
q2.push(xin);
}
}
}
int main(){
cin>>n>>m;
memset(p1,-,sizeof(p1));
memset(p2,-,sizeof(p2));
for(int i=;i<=n;i++) cin>>v[i];
for(int i=;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(z==){
insert1(x,y);
insert2(y,x);
}else{
insert1(x,y);
insert1(y,x);
insert2(x,y);
insert2(y,x);
}
}
dijkstra1();
dijkstra2();
for(int i=;i<=n;i++) ans=max(ans,dis2[i]-dis1[i]);//求出答案
cout<<ans;
return ;
}

//NOIP2009提高组t3

//好困啊,zzz

洛谷 P1073 最优贸易 & [NOIP2009提高组](反向最短路)的更多相关文章

  1. 洛谷 P1073 最优贸易 解题报告

    P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...

  2. 洛谷P1073 最优贸易==codevs1173 最优贸易

    P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...

  3. 洛谷 P1073 最优贸易 最短路+SPFA算法

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...

  4. 洛谷——P1073 最优贸易

    P1073 最优贸易 n 个城市间以 m 条有向道路连接, 小 T 从 1 号城市出发, 将要去往 n 号城市.小 T 观察到一款商品 Z 在不同的城市的价格可能不尽相同,小 T 想要在旅行中的某一个 ...

  5. [NOIP2009] 提高组 洛谷P1073 最优贸易

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  6. 洛谷——P1073 最优贸易 ([NOIP2009] )

    https://www.luogu.org/problem/show?pid=1073 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多 ...

  7. 洛谷P1073 最优贸易 [图论,DP]

    题目传送门 最优贸易 题目描述 C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分为双向 ...

  8. 洛谷 P1073 最优贸易

    题目描述 CC C 国有 n n n 个大城市和 m mm 条道路,每条道路连接这 nnn 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 mmm 条道路中有一部分为单向通行的道路 ...

  9. 洛谷P1073最优贸易(跑两遍dij)

    题目描述 CC C国有n n n个大城市和m mm 条道路,每条道路连接这 nnn个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 mmm 条道路中有一部分为单向通行的道路,一部分为 ...

随机推荐

  1. AGC014做题记录

    貌似是比较水的一场 可是我依然8会做 C 发现除了第一步以外的走法都不会受到锁的影响并且一定选四个方向距离最近的径直走过去 那么第一步能走到的联通块取个min就好了 (我竟然第一发特别认真的写了一个D ...

  2. 【GDOI 2016 Day1】疯狂动物城

    题目 分析 注意注意:码农题一道,打之前做好心理准备. 对于操作1.2,修改或查询x到y的路径,显然树链剖分. 对于操作2,我们将x到y的路径分为x到lca(x,y)和lca(x,y)到y两部分. 对 ...

  3. 同样是1ms子帧,为什么5G的时延比LTE小得多

    转载:http://www.txrjy.com/forum.php?mod=viewthread&tid=1045092 个子帧中一定包含14个OFDM符号.当子载波间隔是15KHz时,1个5 ...

  4. Spring Boot文件上传

    一.创建一个简单的包含WEB依赖的SpringBoot项目 二.配置文件上传的文件大小限制 # 上传文件总的最大值spring.servlet.multipart.max-request-size=1 ...

  5. spring IOC(Spring 生命周期,先1.构造方式,2,初始化方法,3,目标方法,4,销毁方法)

  6. Java冠军程序员告诉你如何提升技术

    让我们跟着兄弟连JavaEE培训 导师,聊一聊——怎样成为冠军程序员 ? 我认为以下几点能力是非常有帮助的: 1.强大的记忆力.当 我上八年级的时候,全因那位死气沉沉的历史老师,让我自己都相信我的记忆 ...

  7. Linux内核设计与实现 总结笔记(第九章)内核同步介绍

    在使用共享内存的应用程序中,程序员必须特别留意保护共享资源,防止共享资源并发访问. 一.临界区和竞争条件 1.1 临界区和竞争条件 所谓临界区就是访问和操作共享数据代码段.多个执行线程并发访问同一个资 ...

  8. PHP实现大文件上传和下载

    一提到大文件上传,首先想到的是啥??? 没错,就是修改php.ini文件里的上传限制,那就是upload_max_filesize.修改成合适参数我们就可以进行愉快的上传文件了.当然啦,这是一般情况下 ...

  9. codevs 3060 抓住那头奶牛 x

    3060 抓住那头奶牛 USACO  时间限制: 1 s  空间限制: 16000 KB  题目等级 : 黄金 Gold   题目描述 Description 农夫约翰被告知一头逃跑奶牛的位置,想要立 ...

  10. 【bzoj3038】上帝造题的七分钟2

    *题目描述: XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. “第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段数中每个数都开平 ...