题目大意:给定一个长度为 N 的序列,定义连续区间 [l, r] 为:序列的一段子区间,满足 [l, r] 中的元素从小到大排序后,任意相邻两项的差值不超过1。求一共有多少个连续区间。

题解:单调栈 + 线段树

首先,对于区间计数类问题常规的思路是枚举区间的左端点或右端点,统计以该点为端点的区间个数,加入答案贡献。

对于这道题来说,不妨枚举答案的右端点 r,那么对于每个 r,需要快速得出有多少个左端点 l,使得区间 [l, r] 满足连续区间的性质。若能在 \(O(logn)\) 的时间内得出答案即可解决本题。

根据连续区间的性质,可知连续区间的定义等价于

\[max(a[l...r])-min(a[l...r])+1 \ge cnt
\]

其中,cnt 为区间 [l, r] 中不同数字的个数。可以发现,只有取得等号的时候才满足连续区间的性质,即:\(max - min - cnt = -1\)。因此,对于每个枚举到的右端点 r,我们需要知道每个小于 r 的 l, [l, r] 区间的最大值和最小值以及区间不同数的个数。

可以利用线段树维护 \(max - min - cnt\),只需维护区间最小值以及区间最小值的个数,即可在线段树上快速回答询问。

维护区间最值可以利用单调栈,即:第 i 个元素入栈时,栈内元素由于单调性,自然维护了区间[i, r] 的最值,每次从栈中弹出元素时,需要在线段树上修改维护的最值贡献。

维护区间颜色数是一个经典问题,即:维护一个 pre 数组,用于记录上一次某个元素出现的位置。

代码如下

#include <bits/stdc++.h>
using namespace std;
typedef long long LL; struct node { // max - min - cnt >= -1
#define ls(o) t[o].lc
#define rs(o) t[o].rc
int lc, rc;
LL mi, cnt, add;
};
vector<node> t;
int tot, rt;
inline void up(int o) {
if (t[ls(o)].mi == t[rs(o)].mi) {
t[o].mi = t[ls(o)].mi;
t[o].cnt = t[ls(o)].cnt + t[rs(o)].cnt;
} else if (t[ls(o)].mi < t[rs(o)].mi) {
t[o].mi = t[ls(o)].mi;
t[o].cnt = t[ls(o)].cnt;
} else {
t[o].mi = t[rs(o)].mi;
t[o].cnt = t[rs(o)].cnt;
}
}
inline void down(int o) {
if (t[o].add != 0) {
t[ls(o)].mi += t[o].add, t[ls(o)].add += t[o].add;
t[rs(o)].mi += t[o].add, t[rs(o)].add += t[o].add;
t[o].add = 0;
}
}
inline int newnode() {
++tot;
t[tot].lc = t[tot].lc = t[tot].mi = t[tot].cnt = t[tot].add = 0;
return tot;
}
void build(int &o, int l, int r) {
o = newnode();
if (l == r) {
t[o].mi = t[o].add = 0, t[o].cnt = 1;
return;
}
int mid = l + r >> 1;
build(ls(o), l, mid);
build(rs(o), mid + 1, r);
up(o);
}
void modify(int o, int l, int r, int x, int y, LL add) {
if (l == x && r == y) {
t[o].mi += add, t[o].add += add;
return;
}
int mid = l + r >> 1;
down(o);
if (y <= mid) {
modify(ls(o), l, mid, x, y, add);
} else if (x > mid) {
modify(rs(o), mid + 1, r, x, y, add);
} else {
modify(ls(o), l, mid, x, mid, add);
modify(rs(o), mid + 1, r, mid + 1, y, add);
}
up(o);
} int main() {
int T, kase = 0;
scanf("%d", &T);
while (T--) {
int n;
scanf("%d", &n);
vector<int> a(n + 1);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
t.resize(2 * n), tot = 0;
build(rt, 1, n);
vector<pair<int, int>> mi(n + 1), mx(n + 1);
int top1 = 0, top2 = 0;
map<int, int> pre;
LL ans = 0;
for (int i = 1, now; i <= n; i++) { // <val, pos>
now = i;
while (top1 > 0 && a[i] < mi[top1].first) {
int pos = mi[top1 - 1].second;
modify(rt, 1, n, pos + 1, now - 1, mi[top1].first - a[i]);
--top1;
now = pos + 1;
}
mi[++top1] = make_pair(a[i], i);
now = i;
while (top2 > 0 && a[i] > mx[top2].first) {
int pos = mx[top2 - 1].second;
modify(rt, 1, n, pos + 1, now - 1, a[i] - mx[top2].first);
--top2;
now = pos + 1;
}
mx[++top2] = make_pair(a[i], i);
if (pre.find(a[i]) != pre.end()) {
int pos = pre[a[i]];
modify(rt, 1, n, pos + 1, i, -1);
} else {
modify(rt, 1, n, 1, i, -1);
}
pre[a[i]] = i;
if (t[rt].mi == -1) {
ans += t[rt].cnt;
}
}
printf("Case #%d: %lld\n", ++kase, ans);
}
return 0;
}

【2019银川网络赛】L:Continuous Intervals的更多相关文章

  1. 2019南昌网络赛I:Yukino With Subinterval(CDQ) (树状数组套主席树)

    题意:询问区间有多少个连续的段,而且这段的颜色在[L,R]才算贡献,每段贡献是1. 有单点修改和区间查询. 思路:46min交了第一发树套树,T了. 稍加优化多交几次就过了. 不难想到,除了L这个点, ...

  2. ACM-ICPC 2019南昌网络赛I题 Yukino With Subinterval

    ACM-ICPC 2019南昌网络赛I题 Yukino With Subinterval 题目大意:给一个长度为n,值域为[1, n]的序列{a},要求支持m次操作: 单点修改 1 pos val 询 ...

  3. ICPC 2019 徐州网络赛

    ICPC 2019 徐州网络赛 比赛时间:2019.9.7 比赛链接:The Preliminary Contest for ICPC Asia Xuzhou 2019 赛后的经验总结 // 比赛完才 ...

  4. 2018宁夏邀请赛 L Continuous Intervals(单调栈+线段树)

    2018宁夏邀请赛 L Continuous Intervals(单调栈+线段树) 传送门:https://nanti.jisuanke.com/t/41296 题意: 给一个数列A 问在数列A中有多 ...

  5. ACM-ICPC 2019南昌网络赛F题 Megumi With String

    ACM-ICPC 南昌网络赛F题 Megumi With String 题目描述 给一个长度为\(l\)的字符串\(S\),和关于\(x\)的\(k\)次多项式\(G[x]\).当一个字符串\(str ...

  6. 2019 南京网络赛A

    南京网络赛自闭现场 https://nanti.jisuanke.com/t/41298 二维偏序经典题型 二维前缀和!!! #include<bits/stdc++.h> using n ...

  7. 2018ICPC银川 L Continuous Intervals 单调栈 线段树

    题意:给你一个序列,问你这个序列有多少个子区间,满足把区间里的数排序之后相邻两个数之间的差 <= 1 ? 思路:https://blog.csdn.net/u013534123/article/ ...

  8. 2019 ICPC 银川网络赛 D. Take Your Seat (疯子坐飞机问题)

    Duha decided to have a trip to Singapore by plane. The airplane had nn seats numbered from 11 to nn, ...

  9. 2019 ICPC 银川网络赛 H. Fight Against Monsters

    It is my great honour to introduce myself to you here. My name is Aloysius Benjy Cobweb Dartagnan Eg ...

随机推荐

  1. /usr/lib/libstdc++.so.6: version `GLIBCXX_3.4.15' not found错误的解决 转载

    升级cmake时,提示“Error when bootstrapping CMake:Problem while running initial CMake”,第二次运行./bootstrap时,直接 ...

  2. pthon基础知识(索引、切片、序列相加、乘法、检查元素是否是序列成员、计算序列长度、最大最小值)

    序列   数据存储方式  数据结构 python 列表.元组.字典.集合.字符串 序列: 一块用于存放多个值的连续内存空间,并且按一定顺序排列,可以通过索引取值 索引(编号): 索引可以是负数 从左到 ...

  3. 【HANA系列】SAP HANA SQL计算某日期是当月的第几天

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP HANA SQL计算某日 ...

  4. Git 发生Another git process seems to be running in this repository, e.g. an editor opened by 'git commit'.错误

    Git 发生 Unable to create 'D:/Model/test/.git/index.lock': File exists. Another git process seems to b ...

  5. IDEA项目目录里下找不到src,但是src确实存在的的解决方案

    写代码的时候可能出现写着写着src就找不到了,我个人认为是触发了热键导致src被隐藏了,下面就是设置src可见和不可见的操作 这个其实是被隐藏了,打开就好,位置如下:

  6. Kinect开发-开发环境搭建

    0.安装Visual Studio.版本无所谓,但Kinect SDK for Windows只支持C/C#.接下来的开发语言将使用C#,用户界面框架使用WPF. 安装Kinect SDK for W ...

  7. java中super总结

    1:super 可以在子类调用父类中的成员变量(包括static修饰的变量)和方法(包括static修饰的方法) 2:super 可以调用父类的构造方法 super(参数列表),在没有定义时,并且没有 ...

  8. div+css布局教程(1)

    margin:Margin属性用于设置两个元素之间的距离. 后面如果只有两个参数的话,第一个表示top和bottom,第二个表示left和right因为0 auto,表示上下边界为0,左右则根据宽度自 ...

  9. python 装饰器,生成器,迭代器

    装饰器 作用:当我们想要增强原来已有函数的功能,但不想(无法)修改原函数,可以使用装饰器解决 使用: 先写一个装饰器,就是一个函数,该函数接受一个函数作为参数,返回一个闭包,而且闭包中执行传递进来的函 ...

  10. Freemarker生成word文档的时的一些&,>,<报错

    替换模板ftl中的内容的时候,一些特殊的字符需要转移,例如: &,<,> value为字符串 value.replace("&","& ...