题目大意:给定一个长度为 N 的序列,定义连续区间 [l, r] 为:序列的一段子区间,满足 [l, r] 中的元素从小到大排序后,任意相邻两项的差值不超过1。求一共有多少个连续区间。

题解:单调栈 + 线段树

首先,对于区间计数类问题常规的思路是枚举区间的左端点或右端点,统计以该点为端点的区间个数,加入答案贡献。

对于这道题来说,不妨枚举答案的右端点 r,那么对于每个 r,需要快速得出有多少个左端点 l,使得区间 [l, r] 满足连续区间的性质。若能在 \(O(logn)\) 的时间内得出答案即可解决本题。

根据连续区间的性质,可知连续区间的定义等价于

\[max(a[l...r])-min(a[l...r])+1 \ge cnt
\]

其中,cnt 为区间 [l, r] 中不同数字的个数。可以发现,只有取得等号的时候才满足连续区间的性质,即:\(max - min - cnt = -1\)。因此,对于每个枚举到的右端点 r,我们需要知道每个小于 r 的 l, [l, r] 区间的最大值和最小值以及区间不同数的个数。

可以利用线段树维护 \(max - min - cnt\),只需维护区间最小值以及区间最小值的个数,即可在线段树上快速回答询问。

维护区间最值可以利用单调栈,即:第 i 个元素入栈时,栈内元素由于单调性,自然维护了区间[i, r] 的最值,每次从栈中弹出元素时,需要在线段树上修改维护的最值贡献。

维护区间颜色数是一个经典问题,即:维护一个 pre 数组,用于记录上一次某个元素出现的位置。

代码如下

#include <bits/stdc++.h>
using namespace std;
typedef long long LL; struct node { // max - min - cnt >= -1
#define ls(o) t[o].lc
#define rs(o) t[o].rc
int lc, rc;
LL mi, cnt, add;
};
vector<node> t;
int tot, rt;
inline void up(int o) {
if (t[ls(o)].mi == t[rs(o)].mi) {
t[o].mi = t[ls(o)].mi;
t[o].cnt = t[ls(o)].cnt + t[rs(o)].cnt;
} else if (t[ls(o)].mi < t[rs(o)].mi) {
t[o].mi = t[ls(o)].mi;
t[o].cnt = t[ls(o)].cnt;
} else {
t[o].mi = t[rs(o)].mi;
t[o].cnt = t[rs(o)].cnt;
}
}
inline void down(int o) {
if (t[o].add != 0) {
t[ls(o)].mi += t[o].add, t[ls(o)].add += t[o].add;
t[rs(o)].mi += t[o].add, t[rs(o)].add += t[o].add;
t[o].add = 0;
}
}
inline int newnode() {
++tot;
t[tot].lc = t[tot].lc = t[tot].mi = t[tot].cnt = t[tot].add = 0;
return tot;
}
void build(int &o, int l, int r) {
o = newnode();
if (l == r) {
t[o].mi = t[o].add = 0, t[o].cnt = 1;
return;
}
int mid = l + r >> 1;
build(ls(o), l, mid);
build(rs(o), mid + 1, r);
up(o);
}
void modify(int o, int l, int r, int x, int y, LL add) {
if (l == x && r == y) {
t[o].mi += add, t[o].add += add;
return;
}
int mid = l + r >> 1;
down(o);
if (y <= mid) {
modify(ls(o), l, mid, x, y, add);
} else if (x > mid) {
modify(rs(o), mid + 1, r, x, y, add);
} else {
modify(ls(o), l, mid, x, mid, add);
modify(rs(o), mid + 1, r, mid + 1, y, add);
}
up(o);
} int main() {
int T, kase = 0;
scanf("%d", &T);
while (T--) {
int n;
scanf("%d", &n);
vector<int> a(n + 1);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
t.resize(2 * n), tot = 0;
build(rt, 1, n);
vector<pair<int, int>> mi(n + 1), mx(n + 1);
int top1 = 0, top2 = 0;
map<int, int> pre;
LL ans = 0;
for (int i = 1, now; i <= n; i++) { // <val, pos>
now = i;
while (top1 > 0 && a[i] < mi[top1].first) {
int pos = mi[top1 - 1].second;
modify(rt, 1, n, pos + 1, now - 1, mi[top1].first - a[i]);
--top1;
now = pos + 1;
}
mi[++top1] = make_pair(a[i], i);
now = i;
while (top2 > 0 && a[i] > mx[top2].first) {
int pos = mx[top2 - 1].second;
modify(rt, 1, n, pos + 1, now - 1, a[i] - mx[top2].first);
--top2;
now = pos + 1;
}
mx[++top2] = make_pair(a[i], i);
if (pre.find(a[i]) != pre.end()) {
int pos = pre[a[i]];
modify(rt, 1, n, pos + 1, i, -1);
} else {
modify(rt, 1, n, 1, i, -1);
}
pre[a[i]] = i;
if (t[rt].mi == -1) {
ans += t[rt].cnt;
}
}
printf("Case #%d: %lld\n", ++kase, ans);
}
return 0;
}

【2019银川网络赛】L:Continuous Intervals的更多相关文章

  1. 2019南昌网络赛I:Yukino With Subinterval(CDQ) (树状数组套主席树)

    题意:询问区间有多少个连续的段,而且这段的颜色在[L,R]才算贡献,每段贡献是1. 有单点修改和区间查询. 思路:46min交了第一发树套树,T了. 稍加优化多交几次就过了. 不难想到,除了L这个点, ...

  2. ACM-ICPC 2019南昌网络赛I题 Yukino With Subinterval

    ACM-ICPC 2019南昌网络赛I题 Yukino With Subinterval 题目大意:给一个长度为n,值域为[1, n]的序列{a},要求支持m次操作: 单点修改 1 pos val 询 ...

  3. ICPC 2019 徐州网络赛

    ICPC 2019 徐州网络赛 比赛时间:2019.9.7 比赛链接:The Preliminary Contest for ICPC Asia Xuzhou 2019 赛后的经验总结 // 比赛完才 ...

  4. 2018宁夏邀请赛 L Continuous Intervals(单调栈+线段树)

    2018宁夏邀请赛 L Continuous Intervals(单调栈+线段树) 传送门:https://nanti.jisuanke.com/t/41296 题意: 给一个数列A 问在数列A中有多 ...

  5. ACM-ICPC 2019南昌网络赛F题 Megumi With String

    ACM-ICPC 南昌网络赛F题 Megumi With String 题目描述 给一个长度为\(l\)的字符串\(S\),和关于\(x\)的\(k\)次多项式\(G[x]\).当一个字符串\(str ...

  6. 2019 南京网络赛A

    南京网络赛自闭现场 https://nanti.jisuanke.com/t/41298 二维偏序经典题型 二维前缀和!!! #include<bits/stdc++.h> using n ...

  7. 2018ICPC银川 L Continuous Intervals 单调栈 线段树

    题意:给你一个序列,问你这个序列有多少个子区间,满足把区间里的数排序之后相邻两个数之间的差 <= 1 ? 思路:https://blog.csdn.net/u013534123/article/ ...

  8. 2019 ICPC 银川网络赛 D. Take Your Seat (疯子坐飞机问题)

    Duha decided to have a trip to Singapore by plane. The airplane had nn seats numbered from 11 to nn, ...

  9. 2019 ICPC 银川网络赛 H. Fight Against Monsters

    It is my great honour to introduce myself to you here. My name is Aloysius Benjy Cobweb Dartagnan Eg ...

随机推荐

  1. 怎样提高js的编程能力

    1,学习js分几个阶段,没入门,入门初学者,中级水平,高级水平,ppt水平. 2,没入门的如何学习? 我当初是先学jquery,有css和html基础,有css基础看jq的语法很简单,就是选择符,jq ...

  2. Linux-把任务放到后台

    公司用的服务器,只能ssh远程操作,每天都会自动退出账户,不知道怎么回事儿,很郁闷.所以每天早起重新登录后发现进程已经关闭了,因为你运行的任务是和terminal关联在一起的,terminal关闭后, ...

  3. HCL试验4

    PC端配置:配置ip地址 配置网关 交换机配置:①创建VLAN system-view vlan 10 vlan 20 ②配置PC端接口 interface vlan-interface 10 ip ...

  4. C++学习笔记-运算符重载

    运算符重载使得用户自定义的数据以一种更简洁的方式工作 运算符重载规则 重载运算符的限制 可以重载的运算符 + - * / % ^ & | ~ ! = < > += -= *= /= ...

  5. nginx - 反向代理 - 配置文件模板 - nginx 代理tcp的服务 - 部署示意图

    danjan01deiMac:~ danjan01$ cat /usr/local/etc/nginx/nginx.conf|grep -v '^$' worker_processes 1; even ...

  6. SpringBoot自动化配置之四:@Conditional注解详解

    前言 之前在分析spring boot 源码时导出可见@ConditionalOnBean 之类的注解,那么它到底是如何使用的以及其工作流程如何,我们这里就围绕以下几点来分析: @Conditiona ...

  7. 解决PowerDesigner提示This data item is already used in a primary identifier

    解决PowerDesigner提示This data item is already used in a primary identifier 解决PowerDesigner提示This data i ...

  8. c++贪吃蛇

    显示方式:清屏打印二位数组,数组即游戏地图,包括墙面(用‘W’表示),蛇(‘H’表蛇头,‘B’表身体)和食物(用‘f’表示). ; char map[MaxMap][MaxMap]; 边缘为墙面: ; ...

  9. Python 入门 之 类成员

    Python 入门 之 类成员 1.类的私有成员: 私有: 只能自己拥有 以 __ 开头就是私有内容 对于每一个类的成员而言都有两种形式: - 公有成员,在任何地方都能访问 - 私有成员,只有在类的内 ...

  10. React应该如何优雅的绑定事件?

    前言 由于JS的灵活性,我们在React中其实有很多种绑定事件的方式,然而,其实有许多我们常见的事件绑定,其实并不是高效的.所以本文想给大家介绍一下React绑定事件的正确姿势. 常见两种种错误绑定事 ...