【CF833D】Red-Black Cobweb
【CF833D】Red-Black Cobweb
题面
题解
看到这种统计路径的题目当然是淀粉质啦。
考虑转化一下信息设一条路径上有红点\(a\)个,黑点\(b\)个
则\(2min(a,b)\geq max(a,b)\)
\(\Leftrightarrow 2*a\geq b\)且\(2*b\geq a\)
现在我们需要将过一个点的两条路径合并
设第一条为红\(a_1\),黑\(b_1\),第二条为红\(a_2\),黑\(b_2\)
则有
2(b_1+b_2)\geq a_1+a_2
\]
将一个下标的放一边以便维护
2b_2-a_2\geq a_1-2b_1
\]
每次遍历完一颗子树,按时间加入所有的路径,将不等式左边看作查询二维平面,
右边看作插入坐标,就是一个\(cdq\)分治
复杂度是\(nlog^4\)(因为中间还有快速幂),但常数很小
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 1e5 + 5;
const int Mod = 1e9 + 7;
int fpow(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res = 1ll * res * x % Mod;
x = 1ll * x * x % Mod;
y >>= 1;
}
return res;
}
struct Point { int x, y, op, v; } ;
bool operator < (const Point &l, const Point &r) { return (l.x == r.x) ? (l.y < r.y) : (l.x < r.x); }
struct Graph { int to, cost, col, next; } e[MAX_N << 1]; int fir[MAX_N], e_cnt = 0;
void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; }
void Add_Edge(int u, int v, int w, int c) {
e[e_cnt].to = v, e[e_cnt].cost = w, e[e_cnt].col = c, e[e_cnt].next = fir[u];
fir[u] = e_cnt++;
}
int N, ans = 1, size[MAX_N];
bool used[MAX_N];
int centroid, sz, rmx, c1[MAX_N << 2], c2[MAX_N << 2];
Point stk[MAX_N], q[MAX_N << 2];
int top, cnt;
inline int lb(int x) { return x & -x; }
void add(int x, int v) { while (x <= N * 4 + 1) c1[x] = 1ll * c1[x] * v % Mod, c2[x]++, x += lb(x); }
int Sum(int x) { int res = 1; while (x > 0) res = 1ll * c1[x] * res % Mod, x -= lb(x); return res; }
int Cnt(int x) { int res = 0; while (x > 0) res += c2[x], x -= lb(x); return res; }
void Set(int x) { while (x <= N * 4 + 1) c1[x] = 1, c2[x] = 0, x += lb(x); }
void search_centroid(int x, int fa) {
size[x] = 1; int mx = 0;
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to;
if (v == fa || used[v]) continue;
search_centroid(v, x);
size[x] += size[v];
mx = max(mx, size[v]);
}
mx = max(mx, sz - size[x]);
if (mx < rmx) rmx = mx, centroid = x;
}
void dfs(int x, int fa, int R, int B, int val) {
stk[++top] = (Point){R, B, 0, val};
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to;
if (v == fa || used[v]) continue;
if (e[i].col == 0) dfs(v, x, R + 1, B, 1ll * val * e[i].cost % Mod);
else if (e[i].col != 0) dfs(v, x, R, B + 1, 1ll * val * e[i].cost % Mod);
}
}
void Div(int l, int r) {
if (l >= r) return ;
int mid = (l + r) >> 1;
Div(l, mid); Div(mid + 1, r);
int j = l;
for (int i = mid + 1; i <= r; i++) {
if (!q[i].op) continue;
while (q[j].x <= q[i].x && j <= mid) { if (!q[j].op) add(q[j].y, q[j].v); ++j; }
ans = 1ll * ans * Sum(q[i].y) % Mod * fpow(q[i].v, Cnt(q[i].y)) % Mod;
}
for (int i = l; i < j; i++) if (!q[i].op) Set(q[i].y);
inplace_merge(&q[l], &q[mid + 1], &q[r + 1]);
}
void solve(int x) {
used[x] = 1;
cnt = 0; int Pls = 2 * N + 1;
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to;
if (used[v]) continue;
top = 0;
if (e[i].col == 0) dfs(v, x, 1, 0, e[i].cost);
else if (e[i].col == 1) dfs(v, x, 0, 1, e[i].cost);
for (int j = 1; j <= top; j++) {
int a = stk[j].x, b = stk[j].y;
q[++cnt] = (Point){2 * a - b + Pls, 2 * b - a + Pls, 1, stk[j].v};
}
for (int j = 1; j <= top; j++) {
int a = stk[j].x, b = stk[j].y;
q[++cnt] = (Point){b - 2 * a + Pls, a - 2 * b + Pls, 0, stk[j].v};
if (2 * min(a, b) >= max(a, b)) ans = 1ll * ans * stk[j].v % Mod;
}
}
Div(1, cnt);
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to;
if (used[v]) continue;
sz = rmx = size[v];
search_centroid(v, x);
solve(centroid);
}
}
int main () {
clearGraph();
N = gi();
for (int i = 1; i < N; i++) {
int u = gi(), v = gi(), w = gi(), c = gi();
Add_Edge(u, v, w, c);
Add_Edge(v, u, w, c);
}
for (int i = 1; i <= 4 * N + 1; i++) c1[i] = 1, c2[i] = 0;
sz = rmx = N;
search_centroid(1, 0);
solve(centroid);
printf("%d\n", ans);
return 0;
}
【CF833D】Red-Black Cobweb的更多相关文章
- 【CF833D】Red-Black Cobweb(点分治)
[CF833D]Red-Black Cobweb(点分治) 题面 CF 有一棵树,每条边有一个颜色(黑白)和一个权值,定义一条路径是好的,当且仅当这条路径上所有边的黑白颜色个数a,b满足2min(a, ...
- 【BZOJ1419】Red is good 期望
[BZOJ1419]Red is good Description 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻牌,在 ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- 【BZOJ】【1419】Red is good
数学期望/期望DP 还是戳<浅析竞赛中一类数学期望问题的解决方法>这篇论文…… $$ f[i][j]= \begin{cases} 0 &, &i==0 \\ f[i-1] ...
- 【BZOJ1419】 Red is good [期望DP]
Red is good Time Limit: 10 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Description 桌面上有R张红牌和B张 ...
- 【BZOJ1419】Red is good 期望DP
题目大意 桌面上有\(R\)张红牌和\(B\)张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到\(1\)美元,黑牌则付出\(1\)美元.可以随时停止翻牌,在最优策略下平均能得到多少钱 ...
- 【cl】Red Hat Linux虚拟机安装Vmware Tools
1.选择虚拟机,选中导航栏虚拟机>VMware Tool安装 选择右键>extract to 选择/home,新建了自己的文件夹,然后点击extract 一直enter,一直到 然后reb ...
- 【BZOJ】1419 Red is good
[算法]期望DP [题解]其实把状态表示出来就是很简单的期望DP. f[i][j]表示i张红牌,j张黑牌的期望. i=0时,f[0][j]=0. j=0时,f[i][0]=i. f[i][j]=max ...
- 【jquery】基础知识
jquery简介 1 jquery是什么 jquery由美国人John Resig创建,至今已吸引了来自世界各地的众多 javascript高手加入其team. jQuery是继prototype之后 ...
随机推荐
- 历史在重演:从KHTML到WebKit,再到Blink
http://36kr.com/p/202396.html 上周四,Google宣布从WebKit 分支出自己的浏览器渲染引擎 Blink.很多人觉得这像是晴天霹雳,或者甚至是迟到的愚人节笑话,但是其 ...
- 让CI框架支持service层
大家知道CodeIgniter框架式MVC分层的,通常大家把业务逻辑写到Controller中,而Model只负责和数据库打交道. 但是随着业务越来越复杂,controller越来越臃肿,举一个简单的 ...
- 【[APIO2010]巡逻】
\(APIO\)的题就是非常难啊 首先看到\(k=1\)的情况,显然我们只需要找到一条直径把这条直径的两端连起来就好了 因为我们连这一条新边的实质是使得这一条链上的边不需要重复经过了,我们想让走的边尽 ...
- ZooKeeper学习之路 (五)ZooKeeper API的简单使用 增删改查
zookeeper文件系统的增删改查 public class ZKDemo1 { private static final String CONNECT_STRING = "hadoop1 ...
- pyhton 自动化pymysql操作mysqldb数据库增删改查封装
# coding=utf-8 import pymysql import os import configparser """ /* @:param: python ve ...
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- select和epoll
C/S编程模型,对每一个客户端都要开辟一个新的线程,效率必定低下.普通select模型是开辟两个线程,一个用来监听客户端的连接,另一个用于处理客户端请求. fd_set set; FD_ZERO(&a ...
- SSIS中出现数据流数据源假死状态的解决办法
相信开发过Sql Server SSIS的人都遇到过在数据流中数据源假死的问题,特别是Excel Source特别容易假死,当job执行到数据流中的Excel Source时,既不报错也不执行,也没有 ...
- 中文字体@font-face的导入
由于英文字母只有26个,所以生成.eot..woff..ttf..svg等文件是比较小的,也就十几KB而已.但是对于汉字来说,常用的汉字就已经2500个了,生成的文件一般要2-3MB,如此庞大的包对页 ...
- Navicat Premium 12 激活
链接:https://pan.baidu.com/s/1R4WB2JjKd0UYnN00CpUPSA 提取码:e3wy (破解工具及软件安装包) 破解流程:https://www.jianshu.co ...