原题链接点这里

今天在课上听到了这个题,听完后觉得对于一道\(DP\)题目来说,好的状态定义就意味着一切啊!

来看题:

题目描述
为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形。假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<=2000),并已知任何两个人的身高都不同。假定最终排出的队形是A 个人站成一排,为了简化问题,小A想出了如下排队的方式:他让所有的人先按任意顺序站成一个初始队形,然后从左到右按以下原则依次将每个人插入最终棑排出的队形中: -第一个人直接插入空的当前队形中。 -对从第二个人开始的每个人,如果他比前面那个人高(H较大),那么将他插入当前队形的最右边。如果他比前面那个人矮(H较小),那么将他插入当前队形的最左边。 当N个人全部插入当前队形后便获得最终排出的队形。 例如,有6个人站成一个初始队形,身高依次为1850、1900、1700、1650、1800和1750, 那么小A会按以下步骤获得最终排出的队形: 1850
1850 , 1900 因为 1900 > 1850
1700, 1850, 1900 因为 1700 < 1900
1650 . 1700, 1850, 1900 因为 1650 < 1700
1650 , 1700, 1850, 1900, 1800 因为 1800 > 1650
1750, 1650, 1700,1850, 1900, 1800 因为 1750 < 1800 因此,最终排出的队形是 1750,1650,1700,1850, 1900,1800 小A心中有一个理想队形,他想知道多少种初始队形可以获得理想的队形 输出格式:
注意要mod19650827 说明
30%的数据:n<=100
100%的数据:n<=1000

首先,不难发现这样的队列一定有一个性质,对于每次完成加人操作后的队列,它一定是最终队列的一个子区间。于是我们就可以用区间DP来搞这道题了。

下面的这个状态定义,非常的巧妙(不可能的,我这一辈子都是不可能想出来的):

令\(h[i]\)为最终队列第i个人的身高,\(f[l][r][0], f[l][r][1]\)分别为对于区间\([l,r]\)最后一次加人是在左边,和在右边的方案数,不难yy出转移方程如下:

\(f[l][r][0] = f[l+1][r][0]*(h[l+1]>h[l])+f[l+1][r][1]*(h[r]>h[l])\)

\(f[l][r][1] = f[l][r-1][0]*(h[l]<h[r])+f[l][r-1][1]*(h[r-1]<h[r])\)

然后我们就可以按照先枚举长度,再枚举起点的区间\(DP\)的套路来转移了()

上代码

#include <iostream>

using namespace std;

const int N = 1005, mod = 19650827;

int n, h[N], f[N][N][2]; //0代表左边 1代表右边 

int main() {
ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); //读入优化
cin >> n;
for(int i = 1; i <= n; i++) cin >> h[i], f[i][i][0] = 1; //初始化
for(int k = 2; k <= n; k++) //枚举长度
for(int i = 1; i+k-1 <= n; i++) { //枚举起点
int l = i, r = i+k-1;
f[l][r][0] = (f[l+1][r][0]*(h[l+1]>h[l])+f[l+1][r][1]*(h[r]>h[l]))%mod; //状态转移
f[l][r][1] = (f[l][r-1][0]*(h[l]<h[r])+f[l][r-1][1]*(h[r-1]<h[r]))%mod;
}
cout << (f[1][n][0]+f[1][n][1])%mod; //最终答案为最后一次加人在左边和在右边的和
return 0;
}

洛谷P3205 [HNOI2011]合唱队 DP的更多相关文章

  1. 洛谷 P3205 [HNOI2010]合唱队 解题报告

    P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...

  2. 洛谷——P3205 [HNOI2010]合唱队

    P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...

  3. 洛谷 P3205 [HNOI2010]合唱队(区间dp)

    传送门 解题思路 观察队形的组成方式可以得出,最后一名加入区间i...j的人要么是在i位置上,要么是在j位置上,所以我们可以用dp[i][j][0]表示区间i...j最后一个加入的人站在i位置上的方案 ...

  4. [洛谷P3205] HNOI2010 合唱队

    问题描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<= ...

  5. 洛谷 P3205 [HNOI2010]合唱队

    题目链接 题解 区间dp \(f[i][j]\)表示i~j区间最后一次插入的是\(a[i]\) \(g[i][j]\)表示i~j区间最后一次插入的是\(a[j]\) 然后就是普通区间dp转移 Code ...

  6. 「区间DP」「洛谷P3205」「 [HNOI2010]」合唱队

    洛谷P3205 [HNOI2010]合唱队 题目: 题目描述 为了在即将到来的晚会上有更好的演出效果,作为 A 合唱队负责人的小 A 需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共 n 个 ...

  7. 【题解】洛谷P3205【HNOI2010】合唱队

    洛谷 P3205:https://www.luogu.org/problemnew/show/P3205 复习区间DPing 思路 把理想队列拆分成 第一个和后面几个 划分成求后面几个的理想队列 最后 ...

  8. 洛谷 P3214 - [HNOI2011]卡农(线性 dp)

    洛谷题面传送门 又是一道我不会的代码超短的题( 一开始想着用生成函数搞,结果怎么都搞不粗来/ll 首先不妨假设音阶之间存在顺序关系,最终答案除以 \(m!\) 即可. 本题个人认为一个比较亮的地方在于 ...

  9. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

随机推荐

  1. (办公)TOKEN

    token就是HTTP认证,输入正确的token,在放在Authorization header中发送给服务器,认证成功.,就可以正确的拿到接口数据. 举个例子: 第一步:  客户端发送http re ...

  2. ASP.NET Zero--前期要求

    前期要求 需要以下工具才能使用ASP.NET Zero Core解决方案: Visual Studio 2017 + Visual Studio扩展: Bundler&Minifier Web ...

  3. bug优先级别

    https://www.cnblogs.com/evablogs/p/6785083.html bug缺陷的优先级别 首先需要对一个版本进行冒烟测试,确定基本功能测试,如果不通过的话进行后期的测试已经 ...

  4. 爬虫基础--IO多路复用单线程异步非阻塞

    最近一直的学习爬虫  ,进行基础的学习 性能相关 参考 https://www.cnblogs.com/wupeiqi/p/6229292.html # 目标:单线程实现并发HTTP请求 # # so ...

  5. 取消导航栏navigationBar的半透明/毛玻璃效果

    iOS 7.0以上的系统,导航栏默认有毛玻璃效果,遮住了颜色 原因是7.0以上的系统,导航栏默认有毛玻璃效果,遮住了颜色,取消掉这个效果就行了. if( ([[[UIDevice currentDev ...

  6. SQLServer之添加聚集索引

    聚集索引添加规则 聚集索引按下列方式实现 PRIMARY KEY 和 UNIQUE 约束 在创建 PRIMARY KEY 约束时,如果不存在该表的聚集索引且未指定唯一非聚集索引,则将自动对一列或多列创 ...

  7. logging_modules

    老师的博客:http://www.cnblogs.com/Eva-J/articles/7228075.html#_label13 basicconfig import logging logging ...

  8. 【Teradata】安装SQL Assistant和Administrator 16.20(含查看.net版本)

    1.安装介质获取: 获取的路径:connections==>Gateways==>Customer Services==>TOOLS & APPLICATIONS(点击Mor ...

  9. C#基础知识之关键字

    关键字是 C# 编译器预定义的保留字.这些关键字不能用作标识符,但是,如果您想使用这些关键字作为标识符,可以在关键字前面加上 @ 字符作为前缀.在 C# 中,有些关键字在代码的上下文中有特殊的意义,如 ...

  10. windows环境:idea或者eclipse指定用户名操作hadoop集群

    方法 在系统的环境变量或java JVM变量添加HADOOP_USER_NAME(具体值视情况而定). 比如:idea里面可以如下添加HADOOP_USER_NAME=hdfs 原理:直接看源码 /h ...