原题链接点这里

今天在课上听到了这个题,听完后觉得对于一道\(DP\)题目来说,好的状态定义就意味着一切啊!

来看题:

题目描述
为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形。假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<=2000),并已知任何两个人的身高都不同。假定最终排出的队形是A 个人站成一排,为了简化问题,小A想出了如下排队的方式:他让所有的人先按任意顺序站成一个初始队形,然后从左到右按以下原则依次将每个人插入最终棑排出的队形中: -第一个人直接插入空的当前队形中。 -对从第二个人开始的每个人,如果他比前面那个人高(H较大),那么将他插入当前队形的最右边。如果他比前面那个人矮(H较小),那么将他插入当前队形的最左边。 当N个人全部插入当前队形后便获得最终排出的队形。 例如,有6个人站成一个初始队形,身高依次为1850、1900、1700、1650、1800和1750, 那么小A会按以下步骤获得最终排出的队形: 1850
1850 , 1900 因为 1900 > 1850
1700, 1850, 1900 因为 1700 < 1900
1650 . 1700, 1850, 1900 因为 1650 < 1700
1650 , 1700, 1850, 1900, 1800 因为 1800 > 1650
1750, 1650, 1700,1850, 1900, 1800 因为 1750 < 1800 因此,最终排出的队形是 1750,1650,1700,1850, 1900,1800 小A心中有一个理想队形,他想知道多少种初始队形可以获得理想的队形 输出格式:
注意要mod19650827 说明
30%的数据:n<=100
100%的数据:n<=1000

首先,不难发现这样的队列一定有一个性质,对于每次完成加人操作后的队列,它一定是最终队列的一个子区间。于是我们就可以用区间DP来搞这道题了。

下面的这个状态定义,非常的巧妙(不可能的,我这一辈子都是不可能想出来的):

令\(h[i]\)为最终队列第i个人的身高,\(f[l][r][0], f[l][r][1]\)分别为对于区间\([l,r]\)最后一次加人是在左边,和在右边的方案数,不难yy出转移方程如下:

\(f[l][r][0] = f[l+1][r][0]*(h[l+1]>h[l])+f[l+1][r][1]*(h[r]>h[l])\)

\(f[l][r][1] = f[l][r-1][0]*(h[l]<h[r])+f[l][r-1][1]*(h[r-1]<h[r])\)

然后我们就可以按照先枚举长度,再枚举起点的区间\(DP\)的套路来转移了()

上代码

#include <iostream>

using namespace std;

const int N = 1005, mod = 19650827;

int n, h[N], f[N][N][2]; //0代表左边 1代表右边 

int main() {
ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); //读入优化
cin >> n;
for(int i = 1; i <= n; i++) cin >> h[i], f[i][i][0] = 1; //初始化
for(int k = 2; k <= n; k++) //枚举长度
for(int i = 1; i+k-1 <= n; i++) { //枚举起点
int l = i, r = i+k-1;
f[l][r][0] = (f[l+1][r][0]*(h[l+1]>h[l])+f[l+1][r][1]*(h[r]>h[l]))%mod; //状态转移
f[l][r][1] = (f[l][r-1][0]*(h[l]<h[r])+f[l][r-1][1]*(h[r-1]<h[r]))%mod;
}
cout << (f[1][n][0]+f[1][n][1])%mod; //最终答案为最后一次加人在左边和在右边的和
return 0;
}

洛谷P3205 [HNOI2011]合唱队 DP的更多相关文章

  1. 洛谷 P3205 [HNOI2010]合唱队 解题报告

    P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...

  2. 洛谷——P3205 [HNOI2010]合唱队

    P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...

  3. 洛谷 P3205 [HNOI2010]合唱队(区间dp)

    传送门 解题思路 观察队形的组成方式可以得出,最后一名加入区间i...j的人要么是在i位置上,要么是在j位置上,所以我们可以用dp[i][j][0]表示区间i...j最后一个加入的人站在i位置上的方案 ...

  4. [洛谷P3205] HNOI2010 合唱队

    问题描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<= ...

  5. 洛谷 P3205 [HNOI2010]合唱队

    题目链接 题解 区间dp \(f[i][j]\)表示i~j区间最后一次插入的是\(a[i]\) \(g[i][j]\)表示i~j区间最后一次插入的是\(a[j]\) 然后就是普通区间dp转移 Code ...

  6. 「区间DP」「洛谷P3205」「 [HNOI2010]」合唱队

    洛谷P3205 [HNOI2010]合唱队 题目: 题目描述 为了在即将到来的晚会上有更好的演出效果,作为 A 合唱队负责人的小 A 需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共 n 个 ...

  7. 【题解】洛谷P3205【HNOI2010】合唱队

    洛谷 P3205:https://www.luogu.org/problemnew/show/P3205 复习区间DPing 思路 把理想队列拆分成 第一个和后面几个 划分成求后面几个的理想队列 最后 ...

  8. 洛谷 P3214 - [HNOI2011]卡农(线性 dp)

    洛谷题面传送门 又是一道我不会的代码超短的题( 一开始想着用生成函数搞,结果怎么都搞不粗来/ll 首先不妨假设音阶之间存在顺序关系,最终答案除以 \(m!\) 即可. 本题个人认为一个比较亮的地方在于 ...

  9. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

随机推荐

  1. 【Linux】【Apatch Tomcat】Linux、CentOS7安装最新版Apartch Tomcat环境

    1.前言 相当嫌弃,博客园搞掉了我快写完的 Tomcat. 请先安装 :[Linux][Java]CentOS7安装最新版Java1.8.191运行开发环境 虽然安装Tomcat没啥技术,但是还是记录 ...

  2. SpringMVC从认识到细化了解

    目录 SpringMVC的介绍 介绍: 执行流程 与strut2的对比 基本运行环境搭建 基础示例 控制器的编写 控制器创建方式: 请求映射问题: 获取请求提交的参数 通过域对象(request,re ...

  3. Saltstack_使用指南03_配置管理

    1. 主机规划 注意事项 修改了master或者minion的配置文件,那么必须重启对应的服务. 2. 了解YAML 具体地址 https://docs.saltstack.com/en/latest ...

  4. 1.5 下载和安装VMWare

    搭建虚拟环境一般都有两种方法,一种是系统自带的虚拟机,还有一种是下载VMware,Win8和Win10都自带有虚拟机,但是都不是自动开启的,所以我们必须手动开启. 一.Win10开启虚拟机 在命令行输 ...

  5. Cookie Session 与Token

    由于HTTP是一种无状态的协议,服务器端无法知道用户与客户端交互的状态,比如如果一个用于之前已经访问过该服务器,服务器无法知道该用户是第二次访问,Session和Cookie都是用来保存用户与后端服务 ...

  6. Linux系统中常见的目录名称以及相应内容

    目录名称 应放置文件的内容 /boot 开机所需文件——内核.开机菜单以及所需配置文件等等 /dev 以文件形式存放任何设备与接口 /etc 配置文件 /home 用户家目录 /bin 存放单用户模式 ...

  7. winserver的consul部署实践与.net core客户端使用(附demo源码)

    winserver的consul部署实践与.net core客户端使用(附demo源码)   前言 随着微服务兴起,服务的管理显得极其重要.都知道微服务就是”拆“,把臃肿的单块应用,拆分成多个轻量级的 ...

  8. (九)Delete an Index

    Now let’s delete the index that we just created and then list all the indexes again: 现在让我们删除刚刚创建的索引, ...

  9. Set.js--创建无重复值的无序集合

    Set 集合,不同于 Array,是一种没有重复值的集合. 以下代码出自于<JavaScript 权威指南(第六版)>P217,注意:这里并不是指 es6 / es2015 中的 Set ...

  10. 《Java2 实用教程(第五版)》教学进程

    目录 <Java2 实用教程(第五版)>教学进程 预备作业1:你期望的师生关系是什么? 预备作业2 :学习基础和C语言基础调查 预备作业3:Linux安装及命令入门 第一周作业 第二周作业 ...