在做机器学习时需要有数据进行训练,幸好sklearn提供了很多已经标注好的数据集供我们进行训练。

本节就来看看sklearn提供了哪些可供训练的数据集。

这些数据位于datasets中,网址为:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets

房价数据

加载波士顿房价数据,可以用于线性回归用:

sklearn.datasets.load_boston:http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html#sklearn.datasets.load_boston

加载方式为:

from sklearn.datasets import load_boston
boston = load_boston()
print(boston.data.shape)

这个数据集的shape为:

(506, 13)

也就是506行,13列,这里13列就是影响房价的13个属性,具体是哪些属性可以通过如下代码打印出来:

print(boston.feature_names)

输出为:

['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
'B' 'LSTAT']

具体代表啥意思,要么自己猜,要么上网查吧,我不一一去解释了,我猜几个:RM:room数,也就是户型中的几房,AGE:age(房龄),不知道猜对不对,大家自己去实践了。

你说我咋知道这个数据集中有feature_names属性,我也不知道,我只是把上面的boston整个打印出来看到其中有这个属性的。

预测房价案例

from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
# 加载房价数据
boston = load_boston()
data_X = boston.data
data_y = boston.target # 拆分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data_X, data_y, test_size=0.3) # 创建线性回归模型
model = LinearRegression()
# 训练模型
model.fit(X_train, y_train)
# 打印出预测的前5条房价数据
print("预测的前5条房价数据:")
print(model.predict(X_test)[:5]) # 打印出测试集中实际房价前5条数据
print("测试集中实际房价前5条数据:")
print(y_test[:5])

输出:

预测的前5条房价数据:
[ 17.44807408 27.78251433 18.8344117 17.85437188 34.47632703]
测试集中实际房价前5条数据:
[ 14.3 22.3 22.6 20.6 34.9]

以这个结果集中第一条数据为例,我们预测出某房子的价格是17.4万,而实际价格是14.3万。

不过说实话,上面的房价数据只能用于测试算法,我们真要预测房价的话,原始数据的获得没有那么全和规整,因此,在机器学习中,收集数据并清洗也是一个很重要的工作,脏活累活也必须得干,光有算法没啥用。

花的数据前面一个博文已经讲过了,这里就不再重复了。

手写数字识别数据

还有手写数字识别的,这个也很常用:http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits

创建样本数据

也可以生成一些虚拟的数据,这些是位于官网的API文档中Samples generator一节:

案例源代码为:

from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
# 创建100个样本,1个属性值的数据,输出一个目标值,同时也设置了噪音
X, y = make_regression(n_samples=100, n_features=1, n_targets=1, noise=10)
print(X.shape)
print(y.shape) # 对X,y画散点图,看看长啥模样的
plt.scatter(X, y)
plt.show()

输出的数据为:

(100, 1)
(100,)

也就是X值中有100行1列,y值是100行的值。

输出的图形为:

看起来接近一条直线。

sklearn数据库-【老鱼学sklearn】的更多相关文章

  1. sklearn标准化-【老鱼学sklearn】

    在前面的一篇博文中关于计算房价中我们也大致提到了标准化的概念,也就是比如对于影响房价的参数中有面积和户型,面积的取值范围可以很广,它可以从0-500平米,而户型一般也就1-5. 标准化就是要把这两种参 ...

  2. sklearn交叉验证-【老鱼学sklearn】

    交叉验证(Cross validation),有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法.于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证. 一开始 ...

  3. sklearn交叉验证3-【老鱼学sklearn】

    在上一个博文中,我们用learning_curve函数来确定应该拥有多少的训练集能够达到效果,就像一个人进行学习时需要做多少题目就能拥有较好的考试成绩了. 本次我们来看下如何调整学习中的参数,类似一个 ...

  4. sklearn保存模型-【老鱼学sklearn】

    训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要 ...

  5. sklearn交叉验证2-【老鱼学sklearn】

    过拟合 过拟合相当于一个人只会读书,却不知如何利用知识进行变通. 相当于他把考试题目背得滚瓜烂熟,但一旦环境稍微有些变化,就死得很惨. 从图形上看,类似下图的最右图: 从数学公式上来看,这个曲线应该是 ...

  6. sklearn模型的属性与功能-【老鱼学sklearn】

    本节主要讲述模型中的各种属性及其含义. 例如上个博文中,我们有用线性回归模型来拟合房价. # 创建线性回归模型 model = LinearRegression() # 训练模型 model.fit( ...

  7. tensorflow卷积神经网络-【老鱼学tensorflow】

    前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...

  8. 二分类问题续 - 【老鱼学tensorflow2】

    前面我们针对电影评论编写了二分类问题的解决方案. 这里对前面的这个方案进行一些改进. 分批训练 model.fit(x_train, y_train, epochs=20, batch_size=51 ...

  9. numpy有什么用【老鱼学numpy】

    老鱼为了跟上时代潮流,也开始入门人工智能.机器学习了,瞬时觉得自己有点高大上了:). 从机器学习的实用系列出发,我们会以numpy => pandas => scikit-learn =& ...

随机推荐

  1. 【题解】放球游戏A

    题目描述 校园里在上活动课,Red和Blue两位小朋友在玩一种游戏,他俩在一排N个格子里,自左到右地轮流放小球,每个格子只能放一个小球.每个人一次只能放1至5个球,最后面对没有空格而不能放球的人为输. ...

  2. golang 代码笔记

    锁 互斥锁,g0获取锁,到释放锁之间,g1去获取锁失败,阻塞,g0释放锁之后g1获取锁成功,gn阻塞. package main import ( "fmt" "sync ...

  3. elastalert

    http://blog.51cto.com/kexiaoke/1977481 什么是? ElastAlert是一个简单的框架,用于从弹性搜索中的数据中提取异常,尖峰或其他感兴趣的模式.在Yelp,我们 ...

  4. Python 之ConfigParser模块

    一.ConfigParser简介 ConfigParser 是用来读取配置文件的包.配置文件的格式如下:中括号“[ ]”内包含的为section.section 下面为类似于key-value 的配置 ...

  5. python中 yield的用法和生成器generator的说明

    详情: https://www.cnblogs.com/python-life/articles/4549996.html

  6. 神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId ...

  7. Entity Framework入门教程(2)---EF工作流程

    EF工作流程 1.EF基本CRUD流程 下边的图就可以很清晰地展示EF的CRUD操作的基本工作流程: 这里做一个EF CRUD操作的简单总结:1.定义模型:这是EF工作的前提,定义模型包括定义领域类( ...

  8. JAVA IO练习

     停车场有进场和出场的功能1. 进场时:采用键盘录入的方式,录入汽车的品牌.颜色.车牌号. 把品牌.颜色.车牌号,以及进场时间写入car.txt文件中. 2. 出场时:键盘录入车牌号,去文件中查找该车 ...

  9. react-router v4 按需加载的配置方法

    在react项目开发中,当访问默认页面时会一次性请求所有的js资源,这会大大影响页面的加载速度和用户体验.所以添加按需加载功能是必要的,以下是配置按需加载的方法: 安装bundle-loader np ...

  10. MYSQL(三)

    转载自https://www.cnblogs.com/wupeiqi/articles/5716963.html 1.索引 索引是表的目录,在查找内容之前可以先在目录中查找索引位置,以此快速定位查询数 ...