Oozie4.3

一 简介

1 官网

http://oozie.apache.org/

Apache Oozie Workflow Scheduler for Hadoop

Hadoop生态的工作流调度器

Overview

Oozie is a workflow scheduler system to manage Apache Hadoop jobs.

Oozie Workflow jobs are Directed Acyclical Graphs (DAGs) of actions.

Oozie Coordinator jobs are recurrent Oozie Workflow jobs triggered by time (frequency) and data availability.

Oozie is integrated with the rest of the Hadoop stack supporting several types of Hadoop jobs out of the box (such as Java map-reduce, Streaming map-reduce, Pig, Hive, Sqoop and Distcp) as well as system specific jobs (such as Java programs and shell scripts).

Oozie is a scalable, reliable and extensible system.

2 部署

3 数据库表结构

wf_jobs:工作流实例

wf_actions:任务实例

coord_jobs:调度实例

coord_actions:调度任务实例

4 概念

l  Control Node:工作流的开始、结束以及决定Workflow的执行路径的节点(start、end、kill、decision、fork/join)

l  Action Node:工作流执行的计算任务,支持的类型包括(HDFS、MapReduce、Java、Shell、SSH、Pig、Hive、E-Mail、Sub-Workflow、Sqoop、Distcp),即任务

l  Workflow:由Control Node以及一系列Action Node组成的工作流,即工作流

l  Coordinator:根据指定Cron信息触发workflow,即调度

l  Bundle:按照组的方式批量管理Coordinator任务,实现集中的启停

二 代码解析

1 启动过程

加载配置的所有service:

ServicesLoader.contextInitialized

         Services.init

                  Services.loadServices (oozie.services, oozie.services.ext)

Service结构:

Service

         org.apache.oozie.service.SchedulerService,

         org.apache.oozie.service.InstrumentationService,

         org.apache.oozie.service.MemoryLocksService,

         org.apache.oozie.service.UUIDService,

         org.apache.oozie.service.ELService,

         org.apache.oozie.service.AuthorizationService,

         org.apache.oozie.service.UserGroupInformationService,

         org.apache.oozie.service.HadoopAccessorService,

         org.apache.oozie.service.JobsConcurrencyService,

         org.apache.oozie.service.URIHandlerService,

         org.apache.oozie.service.DagXLogInfoService,

         org.apache.oozie.service.SchemaService,

         org.apache.oozie.service.LiteWorkflowAppService,

         org.apache.oozie.service.JPAService,

         org.apache.oozie.service.StoreService,

         org.apache.oozie.service.SLAStoreService,

         org.apache.oozie.service.DBLiteWorkflowStoreService,

         org.apache.oozie.service.CallbackService,

         org.apache.oozie.service.ActionService,

         org.apache.oozie.service.ShareLibService,

         org.apache.oozie.service.CallableQueueService,

         org.apache.oozie.service.ActionCheckerService,

         org.apache.oozie.service.RecoveryService,

         org.apache.oozie.service.PurgeService,

         org.apache.oozie.service.CoordinatorEngineService,

         org.apache.oozie.service.BundleEngineService,

         org.apache.oozie.service.DagEngineService,

         org.apache.oozie.service.CoordMaterializeTriggerService,

         org.apache.oozie.service.StatusTransitService,

         org.apache.oozie.service.PauseTransitService,

         org.apache.oozie.service.GroupsService,

         org.apache.oozie.service.ProxyUserService,

         org.apache.oozie.service.XLogStreamingService,

         org.apache.oozie.service.JvmPauseMonitorService,

         org.apache.oozie.service.SparkConfigurationService

2 核心引擎

BaseEngine

         DAGEngine (负责workflow执行

         CoordinatorEngine 负责coordinator执行

         BundleEngine 负责bundle执行

3 workflow提交执行过程

DAGEngine.submitJob| submitJobFromCoordinator (提交workflow)

         SubmitXCommand.call

                  execute

                          LiteWorkflowAppService.parseDef (解析得到WorkflowApp)

                                   LiteWorkflowLib.parseDef

                                            LiteWorkflowAppParser.validateAndParse

                                                     parse

                          WorkflowLib.createInstance (创建WorkflowInstance)

                          BatchQueryExecutor.executeBatchInsertUpdateDelete (保存WorkflowJobBean 到wf_jobs)

         StartXCommand.call

                  SignalXCommand.call

                          execute

                                   WorkflowInstance.start

                                            LiteWorkflowInstance.start

                                                     signal

                                                             NodeHandler.enter

                                                                      ActionNodeHandler.enter

                                                                               start

                                                                                        LiteWorkflowStoreService.liteExecute (添加WorkflowActionBean到ACTIONS_TO_START)

                                   WorkflowStoreService.getActionsToStart (从ACTIONS_TO_START取Action)

                                            ActionStartXCommand.call

                                                     ActionExecutor.start

                                                     WorkflowNotificationXCommand.call

                                            BatchQueryExecutor.executeBatchInsertUpdateDelete (保存WorkflowActionBean到wf_actions)

ActionExecutor.start是异步的,还需要检查Action执行状态来推进流程,有两种情况:

一种是Oozie Server正常运行:利用JobEndNotification

CallbackServlet.doGet

         DagEngine.processCallback

                  CompletedActionXCommand.call

                          ActionCheckXCommand.call

                                   ActionExecutor.check

ActionEndXCommand.call

                                            SignalXCommand.call

一种是Oozie Server重启:利用ActionCheckerService

ActionCheckerService.init

         ActionCheckRunnable.run

                  runWFActionCheck (GET_RUNNING_ACTIONS, oozie.service.ActionCheckerService.action.check.delay=600)

                          ActionCheckXCommand.call

                                    ActionExecutor.check

                                   ActionEndXCommand.call

                                            SignalXCommand.call

                  runCoordActionCheck

4 coordinator提交执行过程

CoordinatorEngine.submitJob(提交coordinator)

         CoordSubmitXCommand.call

                  submit

                          submitJob

                                   storeToDB

                                            CoordJobQueryExecutor.insert (保存CoordinatorJobBean到coord_jobs)

                                   queueMaterializeTransitionXCommand

                                            CoordMaterializeTransitionXCommand.call

                                                     execute

                                                              materialize

                                                                      materializeActions

                                                                               CoordCommandUtils.materializeOneInstance(创建CoordinatorActionBean)

                                                                                storeToDB

                                                             performWrites

                                                                      BatchQueryExecutor.executeBatchInsertUpdateDelete(保存CoordinatorActionBean到coord_actions)

                                                                      CoordActionInputCheckXCommand.call

                                                                               CoordActionReadyXCommand.call

                                                                                        CoordActionStartXCommand.call

                                                                                                DAGEngine.submitJobFromCoordinator

定时任务触发Materialize:

CoordMaterializeTriggerService.init

         CoordMaterializeTriggerRunnable.run

                  CoordMaterializeTriggerService.runCoordJobMatLookup

                          materializeCoordJobs (GET_COORD_JOBS_OLDER_FOR_MATERIALIZATION)

                                   CoordMaterializeTransitionXCommand.call

5 分布式

有些内部任务只能启动一个,单server环境Oozie中通过MemoryLocksService来保证,多server环境Oozie通过ZKLocksService来保证,要开启ZK,需要开启一些service:

org.apache.oozie.service.ZKLocksService,

org.apache.oozie.service.ZKXLogStreamingService,

org.apache.oozie.service.ZKJobsConcurrencyService,

org.apache.oozie.service.ZKUUIDService

同时需要配置oozie.zookeeper.connection.string

6 任务执行过程

ActionExecutor是任务执行的核心抽象基类,所有的具体任务都是这个类的子类

ActionExecutor

         JavaActionExecutor

         SshActionExecutor

         FsActionExecutor

         SubWorkflowActionExecutor

其中JavaActionExecutor是最重要的一个子类,很多其他的任务都是这个类的子类(比如HiveActionExecutor、SparkActionExecutor等)

JavaActionExecutor.start

         prepareActionDir

         submitLauncher

                  JobClient.getJob

                  injectLauncherCallback

                          ActionExecutor.Context.getCallbackUrl

                                   job.end.notification.url

                  createLauncherConf

                          LauncherMapperHelper.setupLauncherInfo

                  JobClient.submitJob

         check

JavaActionExecutor执行时会提交一个map任务到yarn,即LauncherMapper,

LauncherMapper.map

         LauncherMain.main

LauncherMain是具体任务的执行类

LauncherMain

         JavaMain

         HiveMain

         Hive2Main

         SparkMain

         ShellMain

         SqoopMain

【原创】大数据基础之Oozie(1)简介、源代码解析的更多相关文章

  1. 【原创】大数据基础之Oozie vs Azkaban

    概括 Azkaban是一个非常轻量的开源调度框架,适合二次开发,但是无法直接用于生产环境,存在致命缺陷(比如AzkabanWebServer是单点,1年多时间没有修复),在一些情景下的行为简单粗暴(比 ...

  2. 【原创】大数据基础之Oozie(3)Oozie从4.3升级到5.0

    官方文档如下: http://oozie.apache.org/docs/5.0.0/AG_OozieUpgrade.html 这里写的比较简单,大概过程如下:1 下载5.0代码并编译:2 解压5.0 ...

  3. 【原创】大数据基础之Oozie(2)使用

    命令行 $ oozie help 1 导出环境变量 $ export OOZIE_URL=http://oozie_server:11000/oozie 否则都需要增加 -oozie 参数,比如 $ ...

  4. 【原创】大数据基础之Oozie(4)oozie使用的spark版本升级

    oozie默认使用的spark是1.6,一直没有升级,如果想用最新的2.4,需要自己手工升级 首先看当前使用的spark版本的jar # oozie admin -oozie http://$oozi ...

  5. 【原创】大数据基础之Zookeeper(2)源代码解析

    核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...

  6. 【原创】大数据基础之Impala(1)简介、安装、使用

    impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic datab ...

  7. 【原创】大数据基础之Benchmark(2)TPC-DS

    tpc 官方:http://www.tpc.org/ 一 简介 The TPC is a non-profit corporation founded to define transaction pr ...

  8. 【原创】大数据基础之词频统计Word Count

    对文件进行词频统计,是一个大数据领域的hello word级别的应用,来看下实现有多简单: 1 Linux单机处理 egrep -o "\b[[:alpha:]]+\b" test ...

  9. 大数据基础知识:分布式计算、服务器集群[zz]

    大数据中的数据量非常巨大,达到了PB级别.而且这庞大的数据之中,不仅仅包括结构化数据(如数字.符号等数据),还包括非结构化数据(如文本.图像.声音.视频等数据).这使得大数据的存储,管理和处理很难利用 ...

随机推荐

  1. Linux下修改MySQL数据表中字段属性

    一.修改某个表的字段类型及指定为空或非空 alter table 表名称 change 字段名称 字段名称 字段类型 [是否允许非空]; alter table 表名称 modify 字段名称 字段类 ...

  2. 一、rollup

    参考:reduxreach-routerrollup-starter-librollup-starter-approller-clicreate-react-library 一.安装 npm inst ...

  3. 4月11日java多线程4

    继昨天学习了线程池之后,今天学习了多线程内的锁Lock. 定义方法: ReentrantLock queueLock = new ReentrantLock(); //可重入锁 ReentrantRe ...

  4. Delphi Create(nil), Create(self), Create(Application)的区别

    最近的项目中经常在程序中动态创建控件,势必用到Create. 但是随之而来的问题就是动态创建的控件是否可以正确的释放内存? 以及 Create(nil), Create(self), Create(A ...

  5. fedora上安装ffmpeg

    环境 fedora26 1. 安装 yasm sudo dnf install yasm yasm-devel -y 2.安装 ffmpeg 官方下载ffmpeg源码  ( http://ffmpeg ...

  6. ElasticSsarch汇总

    用途: 分布式实时文件存储,并将每一个字段都编入索引,使其可以被搜索: 实时分析的分布式搜索引擎: 可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据. 点击查看安装.基本增删改查操作REST ...

  7. BZOJ5341[Ctsc2018]暴力写挂——边分治+虚树+树形DP

    题目链接: CSTC2018暴力写挂 题目大意:给出n个点结构不同的两棵树,边有边权(有负权边及0边),要求找到一个点对(a,b)满足dep(a)+dep(b)-dep(lca)-dep'(lca)最 ...

  8. Swift 之Carthage

    1. 安装 $ brew update               //更新brew $ brew install carthage   //下载carthage $ carthage version ...

  9. SpringCloud 过滤器

    在网关中配置过滤器 验证签名 package com.kps.zuul.filter; import com.kps.common.BodyReaderHttpServletRequestWrappe ...

  10. 「洛谷1884」「USACO12FEB」过度种植【离散化扫描线】

    题目链接 [洛谷传送门] 题解 矩阵面积的并模板.(请求洛谷加为模板题) 很明显是要离散化的. 我们将矩阵与\(x\)轴平行的两个线段取出来.并且将这两个端点的\(x1\)和\(x2\)进行离散化. ...