poj 1575  Tr A

主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575

题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。

数据的第一行是一个T,表示有T组数据。

每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每一个数据的范围是[0,9]。表示方阵A的内容。

一个矩阵高速幂的裸题。

题解:

#include<iostream>
#include<stdio.h>
#include<cstring>
#define Mod 9973
using namespace std;
const int MAX = 11; struct Matrix
{
int v[MAX][MAX];
}; int n, k, M; Matrix mtMul(Matrix A, Matrix B) // 求矩阵 A * B
{
int i, j, k;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
{
C.v[i][j] = 0;
for(k = 0; k < n; k ++)
C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]) % Mod;
}
return C;
} Matrix mtPow(Matrix A, int k) // 求矩阵 A ^ k
{
if(k == 0)
{
memset(A.v, 0, sizeof(A.v));
for(int i = 0; i < n; i ++)
A.v[i][i] = 1;
return A;
} if(k == 1) return A; Matrix C = mtPow(A, k / 2);
if(k % 2 == 0)
return mtMul(C, C);
else
return mtMul(mtMul(C, C), A);
} int solv (Matrix A)
{
int ans=0;
for(int i=0;i<n;i++)
ans+=A.v[i][i]%Mod;
return ans;
} void out(Matrix A)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
printf("%d ",A.v[i][j]);
cout<<endl;
}
} int main ()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
Matrix A;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
scanf("%d",&A.v[i][j]);
Matrix ans;
ans=mtPow(A,k);
//out(ans);
cout<<solv(ans)%Mod<<endl;
}
}

poj 3233 Matrix Power Series

相同的矩阵高速幂裸题,主要是要用到
S(6) = (1 + A^3) * S(3)以及S(7) = A + (A + A^4) * S(3),这两个最后求的时候递归会省非常多时间
#include<iostream>
#include<cstring>
#include<stdio.h>
using namespace std;
const int MAX = 32; struct Matrix
{
int v[MAX][MAX];
}; int n, k, M; Matrix mtAdd(Matrix A, Matrix B) // 求矩阵 A + B
{
int i, j;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
C.v[i][j]=(A.v[i][j]+B.v[i][j])% M;
return C;
} Matrix mtMul(Matrix A, Matrix B) // 求矩阵 A * B
{
int i, j, k;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
{
C.v[i][j] = 0;
for(k = 0; k < n; k ++)
C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]) % M;
}
return C;
} Matrix mtPow(Matrix A, int k) // 求矩阵 A ^ k
{
if(k == 0)
{
memset(A.v, 0, sizeof(A.v));
for(int i = 0; i < n; i ++)
A.v[i][i] = 1;
return A;
} if(k == 1) return A; Matrix C = mtPow(A, k / 2);
if(k % 2 == 0)
return mtMul(C, C);
else
return mtMul(mtMul(C, C), A);
} Matrix mtCal(Matrix A, int k) // 求S (k) = A + A2 + A3 + … + Ak
{
if(k == 1) return A;
Matrix B = mtPow(A, (k+1) / 2);
Matrix C = mtCal(A, k / 2);
if(k % 2 == 0)
return mtMul(mtAdd(mtPow(A, 0), B), C); // 如S(6) = (1 + A^3) * S(3)。 else
return mtAdd(A, mtMul(mtAdd(A, B), C)); // 如S(7) = A + (A + A^4) * S(3)
} void out(Matrix A)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n-1;j++)
cout<<A.v[i][j]<<" ";
cout<<A.v[i][n-1]<<endl;
}
} int main ()
{
Matrix A;
scanf("%d%d%d",&n,&k,&M);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
scanf("%d",&A.v[i][j]);
Matrix C=mtCal(A,k);
out(C); }


版权声明:本文博主原创文章,博客,未经同意不得转载。

矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series的更多相关文章

  1. POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】

    任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K To ...

  2. POJ 3233 Matrix Power Series (矩阵乘法)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 11954   Accepted:  ...

  3. [ACM] POJ 3233 Matrix Power Series (求矩阵A+A^2+A^3...+A^k,二分求和或者矩阵转化)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15417   Accepted:  ...

  4. Poj 3233 Matrix Power Series(矩阵乘法)

    Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...

  5. POJ 3233 Matrix Power Series(矩阵快速幂)

    Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 ...

  6. poj 3233 Matrix Power Series(矩阵二分,高速幂)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15739   Accepted:  ...

  7. Poj 3233 Matrix Power Series(矩阵二分快速幂)

    题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k ...

  8. POJ 3233 Matrix Power Series(矩阵高速功率+二分法)

    职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9.     这 ...

  9. POJ 3233 Matrix Power Series (矩阵+二分+二分)

    题目地址:http://poj.org/problem?id=3233 题意:给你一个矩阵A,让你求A+A^2+……+A^k模p的矩阵值 题解:我们知道求A^n我们可以用二分-矩阵快速幂来求,而 当k ...

随机推荐

  1. pstack.sh 改进版

    pstack.sh 改进版本 #!/bin/bash if (( $# < 1 )) ; then echo "usage: `basename $0` pid" 1> ...

  2. win-server下定时备份oracle数据库实现方法

    1.在e盘建立一个“oracle_backup”的文件夹,文件夹下再建两个文件夹分别为:“new”,“old”,然后在oracle_backup文件夹中新建一个bat文件,取名“expdb.bat”, ...

  3. Arcengine 实现要素选取的方法(转载)

    转自原文Arcengine 实现要素选取的方法(转载) 选择一个要素或者一个要素集(FeatureSelection)的方法很多,如IMap::SelectByShape.ILayer::search ...

  4. Android 基于Bmob平台数据管理常用方法整理

    最近想搞一下基于Bmob平台的应用开发,发现确实挺方便的,很好的解决了服务器后台部署的难题, 但是也有一些弊端,数据架构的可扩展性不强,做一些数据结构简单的应用还是可以的. package com.b ...

  5. PatentTips - Fast awake from low power mode

    BACKGROUND Electronic devices, such as electronic book readers ("eBook reader devices"), c ...

  6. Qt 学习: 视图选择 (QItemSelectionModel)

    博主QQ:1356438802 选择是视图中经常使用的一个操作.在列表.树或者表格中,通过鼠标点击能够选中某一项,被选中项会变成高亮或者反色.在 Qt 中,选择也是使用了一种模型.在 model/vi ...

  7. Android程序解析XML文件的方法及使用PULL解析XML案例

    一.一般解析XML文件的方法有SAX和DOM.PULL (1)DOM(JAXP Crimson解析器) DOM是用与平台和语言无关的方式表示XML文档的官方W3C标准.DOM是以层次结构组织的节点或信 ...

  8. [TypeScript] Simplify asynchronous callback functions using async/await

    Learn how to write a promise based delay function and then use it in async await to see how much it ...

  9. 【codeforces 754D】Fedor and coupons

    time limit per test4 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  10. [GeekBand] C++ 基础知识一 ——通过引用传递数组

    本文参考 : C++ Primer (第四版)  7.2.4及 16.1.5 相关章节 GeekBand 侯捷老师,学习笔记 开发环境采用:VS2013版本 关键问题一.传递引用与传指针.传值的区别? ...