矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series
poj 1575 Tr A
主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575
题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每一个数据的范围是[0,9]。表示方阵A的内容。
一个矩阵高速幂的裸题。
题解:
#include<iostream>
#include<stdio.h>
#include<cstring>
#define Mod 9973
using namespace std;
const int MAX = 11; struct Matrix
{
int v[MAX][MAX];
}; int n, k, M; Matrix mtMul(Matrix A, Matrix B) // 求矩阵 A * B
{
int i, j, k;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
{
C.v[i][j] = 0;
for(k = 0; k < n; k ++)
C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]) % Mod;
}
return C;
} Matrix mtPow(Matrix A, int k) // 求矩阵 A ^ k
{
if(k == 0)
{
memset(A.v, 0, sizeof(A.v));
for(int i = 0; i < n; i ++)
A.v[i][i] = 1;
return A;
} if(k == 1) return A; Matrix C = mtPow(A, k / 2);
if(k % 2 == 0)
return mtMul(C, C);
else
return mtMul(mtMul(C, C), A);
} int solv (Matrix A)
{
int ans=0;
for(int i=0;i<n;i++)
ans+=A.v[i][i]%Mod;
return ans;
} void out(Matrix A)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
printf("%d ",A.v[i][j]);
cout<<endl;
}
} int main ()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
Matrix A;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
scanf("%d",&A.v[i][j]);
Matrix ans;
ans=mtPow(A,k);
//out(ans);
cout<<solv(ans)%Mod<<endl;
}
}
poj 3233 Matrix Power Series
#include<iostream>
#include<cstring>
#include<stdio.h>
using namespace std;
const int MAX = 32; struct Matrix
{
int v[MAX][MAX];
}; int n, k, M; Matrix mtAdd(Matrix A, Matrix B) // 求矩阵 A + B
{
int i, j;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
C.v[i][j]=(A.v[i][j]+B.v[i][j])% M;
return C;
} Matrix mtMul(Matrix A, Matrix B) // 求矩阵 A * B
{
int i, j, k;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
{
C.v[i][j] = 0;
for(k = 0; k < n; k ++)
C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]) % M;
}
return C;
} Matrix mtPow(Matrix A, int k) // 求矩阵 A ^ k
{
if(k == 0)
{
memset(A.v, 0, sizeof(A.v));
for(int i = 0; i < n; i ++)
A.v[i][i] = 1;
return A;
} if(k == 1) return A; Matrix C = mtPow(A, k / 2);
if(k % 2 == 0)
return mtMul(C, C);
else
return mtMul(mtMul(C, C), A);
} Matrix mtCal(Matrix A, int k) // 求S (k) = A + A2 + A3 + … + Ak
{
if(k == 1) return A;
Matrix B = mtPow(A, (k+1) / 2);
Matrix C = mtCal(A, k / 2);
if(k % 2 == 0)
return mtMul(mtAdd(mtPow(A, 0), B), C); // 如S(6) = (1 + A^3) * S(3)。 else
return mtAdd(A, mtMul(mtAdd(A, B), C)); // 如S(7) = A + (A + A^4) * S(3)
} void out(Matrix A)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n-1;j++)
cout<<A.v[i][j]<<" ";
cout<<A.v[i][n-1]<<endl;
}
} int main ()
{
Matrix A;
scanf("%d%d%d",&n,&k,&M);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
scanf("%d",&A.v[i][j]);
Matrix C=mtCal(A,k);
out(C); }
版权声明:本文博主原创文章,博客,未经同意不得转载。
矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series的更多相关文章
- POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K To ...
- POJ 3233 Matrix Power Series (矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 11954 Accepted: ...
- [ACM] POJ 3233 Matrix Power Series (求矩阵A+A^2+A^3...+A^k,二分求和或者矩阵转化)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15417 Accepted: ...
- Poj 3233 Matrix Power Series(矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...
- POJ 3233 Matrix Power Series(矩阵快速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 ...
- poj 3233 Matrix Power Series(矩阵二分,高速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15739 Accepted: ...
- Poj 3233 Matrix Power Series(矩阵二分快速幂)
题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k ...
- POJ 3233 Matrix Power Series(矩阵高速功率+二分法)
职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9. 这 ...
- POJ 3233 Matrix Power Series (矩阵+二分+二分)
题目地址:http://poj.org/problem?id=3233 题意:给你一个矩阵A,让你求A+A^2+……+A^k模p的矩阵值 题解:我们知道求A^n我们可以用二分-矩阵快速幂来求,而 当k ...
随机推荐
- 【20.23%】【codeforces 740A】Alyona and copybooks
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【u244】山地考察
Time Limit: 1 second Memory Limit: 128 MB [问题描述] 地质学家们打算考察一片山区.这片山区可分成m*n的网格,每个网格都有唯一的海拔高度,山区外围的海拔高度 ...
- VCS编译仿真警告Warning
VCS编译仿真警告Warning 问题描述 在较大的SOC集成中,通常使用Perl脚本例化子模块到Top层,然而,有时会出现例化出来的输入端口名没有在Top层定义,而且端口的位宽为1bit,那么,ve ...
- [CSS] Target Positional Elements Using *-Of-Type CSS pseudo-classes
Learn how to target elements based on their position inside of a parent element in relation to its s ...
- 【Nutch2.2.1基础教程之1】nutch相关异常 分类: H3_NUTCH 2014-08-08 21:46 1549人阅读 评论(2) 收藏
1.在任务一开始运行,注入Url时即出现以下错误. InjectorJob: Injecting urlDir: urls InjectorJob: Using class org.apache.go ...
- Linux系统下的单调时间函数
欢迎转载,转载请注明出处:http://forever.blog.chinaunix.net 一.编写linux下应用程序的时候,有时候会用到高精度相对时间的概念,比如间隔100ms.那么应该使用哪个 ...
- mysqldump 不需要密码
-p 参数比较特殊,正确语法是 -ppassword,即-p和密码中间不能有空格. 请教:数据库备份命令如果这样写mysqldump -u root -p dataname>/home/data ...
- Windows 计算程序运行时间(高精度计时)
首先,认识一下clock()和GetTickCount(): 一.clock()clock()是C/C++中的计时函数,而与其相关的数据类型是clock_t.在MSDN中,查得对clock函数定义如下 ...
- jquery pagination分页的两种实现方式
原文链接:http://blog.csdn.net/qq_37936542/article/details/79457012 此插件是jQuery的ajax分页插件.如果你用到此插件作分页的时候,涉及 ...
- 【hdu 1067】Gap
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission( ...