UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001。由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T-1], 输出x[2],x[4]......x[2T]. T<=100,0<=x<=10000. 如果有多种可能的输出,任意输出一个结果即可。
由于a和b都小于等于10000,直接枚举a和b暴力可以过。但是有没有更快的方法呢?
首先令递推式的i=2,那么x[2]=(a*x[1]+b)mod 10001;再令i=3,得x[3]=(a*x[2]+b)mod 10001,可以得出x[3]=(a*(a*x[1]+b)+b)mod 10001。这时候只有a和b是变量,我们枚举a,就可以求出b了。(a+1)*b mod 10001 = ( (x[3]-a*a*x[1]) mod 10001 + 10001 ) mod 10001.(这里的x[3]-a*a*x[1]可能为负,代码中可以先不取模,后面计算b的时候一起取模即可) 所以简化成(a+1)*b mod 10001 = (x[3]-a*a*x[1]) mod 10001。这里就变成了同模方程,扩展欧几里得即可解答。
暴力代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; const int maxn=+;
const int mod=;
int in[maxn]; int main()
{
//freopen("in.txt","r",stdin);
int t;
scanf("%d",&t);
for(int i=; i<t; i++)
scanf("%d",in+i);
bool flag;
for(int a=; a<=; a++)
{
for(int b=; b<=; b++)
{
flag=false;
for(int i=; i<t; i++)
if(in[i]!=((a*(a*in[i-]%mod+b)+b)%mod))
{
flag=true;
break;
}
if(!flag)
{
for(int i=; i<t; i++)
printf("%d\n",(a*in[i]+b)%mod);
break;
}
}
if(!flag)
break;
}
return ;
}
扩展欧几里得:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; const int maxn=+;
const int mod=;
int in[maxn];
typedef long long ll; ll exgcd(ll a, ll b, ll&x, ll&y)
{
if (b == )
{
x = ;
y = ;
return a;
}
ll r = exgcd(b, a%b, y, x);
ll t = x;
y = y - a/b*t;
return r;
}
int main()
{
//freopen("in.txt","r",stdin);
int t;
scanf("%d",&t);
for(int i=; i<t; i++)
scanf("%d",in+i);
bool flag;
for(ll a=; a<=; a++)
{
ll x,y; //定义long long 型是保证没有取模的式子不会超内存
ll g=exgcd(a+,mod,x,y);
ll tmp=in[]-a*a*in[]; //这里可以先不取模,后面计算b的时候取模
if(tmp%g==)
{
flag=false;
ll b=(x*tmp/g)%mod; //这里最好取下模,虽然后面计算in[i]的时候也会取模,但是算出来的in[i]可能因为b负太多而变成负数
for(int i=;i<t;i++)
{
if(in[i]!=(a*(a*in[i-]+b)+b)%mod)
{
flag=true;
break;
}
}
if(!flag)
{
for(int i=;i<t;i++)
printf("%d\n",(a*in[i]+b)%mod);
break;
}
} }
return ;
}
UVA 12169 Disgruntled Judge 枚举+扩展欧几里得的更多相关文章
- UVA 12169 Disgruntled Judge【扩展欧几里德】
题意:随机选取x1,a,b,根据公式xi=(a*xi-1+b)%10001得到一个长度为2*n的序列,奇数项作为输入,求偶数项,若有多种,随机输出一组答案. 思路:a和b均未知,可以考虑枚举a和b,时 ...
- UVA 12169 Disgruntled Judge 扩展欧几里得
/** 题目:UVA 12169 Disgruntled Judge 链接:https://vjudge.net/problem/UVA-12169 题意:原题 思路: a,b范围都在10000以内. ...
- UVA.12169 Disgruntled Judge ( 拓展欧几里得 )
UVA.12169 Disgruntled Judge ( 拓展欧几里得 ) 题意分析 给出T个数字,x1,x3--x2T-1.并且我们知道这x1,x2,x3,x4--x2T之间满足xi = (a * ...
- UVa 12169 Disgruntled Judge 紫书
思路还是按照紫书,枚举a,得出b, 然后验证. 代码参考了LRJ的. #include <cstdio> #include <iostream> using namespace ...
- Codeforces Round #451 (Div. 2) B. Proper Nutrition【枚举/扩展欧几里得/给你n问有没有两个非负整数x,y满足x·a + y·b = n】
B. Proper Nutrition time limit per test 1 second memory limit per test 256 megabytes input standard ...
- UVa 12169 (枚举+扩展欧几里得) Disgruntled Judge
题意: 给出四个数T, a, b, x1,按公式生成序列 xi = (a*xi-1 + b) % 10001 (2 ≤ i ≤ 2T) 给出T和奇数项xi,输出偶数项xi 分析: 最简单的办法就是直接 ...
- UVa 12169 - Disgruntled Judge(拓展欧几里德)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 12169 Disgruntled Judge(Extended_Euclid)
用扩展欧几里德Extended_Euclid解线性模方程,思路在注释里面了. 注意数据范围不要爆int了. /********************************************* ...
- UVA 12169 Disgruntled Judge
我该怎么说这道题呢...说简单其实也简单,就枚举模拟,开始卡了好久,今天看到这题没a又写了遍,看似会超时的代码交上去a了,果然实践是检验真理的唯一标准... #include <iostream ...
随机推荐
- Android开发学习之路-SimpleAdapter源码分析学习
今天在课堂上,老师用到了SimpleAdapter,然后女神在边上问我为什么这个SimpleAdapter不能做到我app那种带有进度条的效果,言语说不清,然后就开始看源代码,发现这个Adapter的 ...
- fir.im Weekly - Mobile developer 利器分享
工欲善其事,必先利其器.本期 fir.im Weekly 推荐了很多优秀的 Github 项目.iOS/Android 开发工具利器,比如墨__守独立开发的macOS App -- Repo, 帮助 ...
- EasyUI分页索引不能输入非数字
//分页索引不能输入非数字 function PagerCheck() { $(".pagination-num").keydown(function (event) { even ...
- NPM安装之后CMD中不能使用
NPM安装之后CMD中不能使用 这个情况就是path环境变量没有添加NPM 添加环境变量并重启CMD C:\Users\Mark\AppData\Roaming\npm\ 看看这个文件夹就知道为什么要 ...
- [javascript]模拟汉诺塔
看了博文自己动手写了代码. 这能值几个钱? 请写代码完成汉诺塔的算法:void Hanoi(int maxLevel); 比如2层汉诺塔,需要打印(Console.WriteLine)出如下文本: A ...
- iOS开发中 workspace 与 static lib 工程的联合使用
在iOS开发中,其实workspace的使用没有完全发挥出来,最近做了一些研究,也想把之前写过的代码整理下,因为iOS里面的布局方式,交互方式也就那么几种.所以,整理好了之后,更能快捷开发,而且能够形 ...
- C#相关
1.索引器 索引器允许类或结构的实例按照与数组相同的方式进行索引.索引器类似于属性,不同之处在于它们的访问器采用参数.它可以像数组那样对对象使用下标.它提供了通过索引方式方便地访问类的数据信息的方法. ...
- 网站CSS写在html里面的好处
这是应付超大流量的一种优化方案.为提高速度,他们的外部连接文件一般都存储在单独的服务器上,例如img.****.com,如果这个服务器挂掉 ,整个首页就挂掉了.放在页面内,比较安全.用户访问页面时,不 ...
- JAVA--网络编程(UDP)
上午给大家简单介绍了一下TCP网络通信的知识,现在就为大家补充完整网络编程的知识,关于UDP的通信知识. UDP是一种不可靠的网络协议,那么还有什么使用价值或必要呢?其实不然,在有些情况下UDP协议可 ...
- 15个来自 CodePen 的酷炫 CSS 动画效果【下篇】
CodePen 是一个在线的前端代码编辑和展示网站,能够编写代码并即时预览效果.你在上面可以在线分享自己的 Web 作品,也可以欣赏到世界各地的优秀开发者在网页中实现的各种令人惊奇的效果. 今天这篇文 ...