luogu P2401 不等数列 |动态规划
题目描述
将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”。问在所有排列中,有多少个排列恰好有k个“<”。答案对2015取模。
注:1n的排列指的是1n这n个数各出现且仅出现一次的数列。
输入格式
第一行2个整数n,k。
输出格式
一个整数表示答案。
我们考虑现在我们已经有了n−1个数的排列,再插入nnn使其变成nnn个数的排列
显然,n有n个位置可以选择,我们先来考虑两边的位置。
如果插入到最左边,会造成新的序列比原来多一个大于号
如果插入到最右边,会造成新的序列比原来多一个小于号
其他的位置就是插入到大于号或小于号的位置
如果插入到大于号的位置,删去一个大于号,多一个大于号一个小于号,也就是多一个小于号
如果插入到小于号的位置,删去一个小于号,多一个大于号一个小于号,也就是多一个大于号
我们会发现插入一个数只有多一个小于号和小于号数目不变两种情况
我们用dp[i][j]表示i个数恰有j个小于号的排列数
那么显然
dp[i+1][j]+=dp[i][j]*(j+1)
dp[i+1][j+1]+=dp[i][j]*(i-j)
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N=1e3+10,mod=2015;
int n,k,dp[N][N];
signed main(){
cin>>n>>k;
dp[1][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=i;j++){
(dp[i+1][j]+=dp[i][j]*(j+1))%=mod;
(dp[i+1][j+1]+=dp[i][j]*(i-j))%=mod;
}
cout<<dp[n][k]<<endl;
}
luogu P2401 不等数列 |动态规划的更多相关文章
- 洛谷 P2401 不等数列 题解
每日一题 day25 打卡 Analysis dp[i][j]=dp[i-1][j-1]*(i-j)+dp[i-1][j]*(j+1); 其中i和j是表示前i个数中有j个小于号,j<=i-1 要 ...
- P2401 不等数列
题目描述 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有k个“<”.答案对2015取模. 注:1~n的排列指的是1 ...
- 洛谷 P2401 不等数列
其实有两种方法来解这道题# 第一种:找规律(非正经) 一看,这玩意像是个杨辉三角,还左右对称呢 因为新插入一个数$n$,有$n+1$个位置可以选,所以总数就乘$n+1$,对应的$f[n+1][i]$也 ...
- Luogu 1415-拆分数列-动态规划
Solution 首先要找到使得最后一个数最小, 只需定义一个数组$pre[i]$ 从区间$[pre[i], i]$表示的数, 是最小的能使前面的数递增的方案. $[ pre[n], n]$即为最小的 ...
- 洛谷P2401 不等数列 题解
可食用的题目链接 题解: 有题目得:这个题有巧做法而不是暴力模拟.废话 这个题看着像一道dp,因为可以由前一种(数据更小的推出数据更大的)推出后一种. 我们设已经得到了n-1个数的总方法(1~n-1) ...
- 落谷 P2401 不等数列
题目链接. Solution 状态设计 设 \(f_{i, j}\) 为 \(1\) 到 \(i\) 的排列,其中有 \(j\) 个 \(\text{'<'}\) 的方案数. 状态转移 尝试从 ...
- Codevs 4357 不等数列
不等数列 [题目描述] 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有k个“<”.答案对2012取模. [输入格式 ...
- CJOJ 1644 编辑距离 / Luogu 2758 编辑距离(动态规划)
CJOJ 1644 编辑距离 / Luogu 2758 编辑距离(动态规划) Description 字符串是数据结构和计算机语言里很重要的数据类型,在计算机语言中,对于字符串我们有很多的操作定义,因 ...
- 模拟赛 Problem 2 不等数列(num.cpp/c/pas)
Problem 2 不等数列(num.cpp/c/pas) [题目描述] 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有 ...
随机推荐
- python基础-闭包函数和装饰器
闭包函数和装饰器 闭包函数 概念:在函数中(嵌套)定义另一个函数时,内部函数引用了外层函数的名字. 特性 闭包函数必须在函数内部定义 闭包函数可引用外层函数的名字 闭包函数是函数嵌套.函数对象.名称空 ...
- linux 系统移植uboot
这里使用的版本为:u-boot-2014.04 查看并修改位置如下:u-boot-2014.04/include/configs/at91sam9x5ek.h(1)查看一下Linux内核在NandFl ...
- python经典面试算法题1.1:如何实现链表的逆序
本题目摘自<Python程序员面试算法宝典>,我会每天做一道这本书上的题目,并分享出来,统一放在我博客内,收集在一个分类中. 1.1 如何实现链表的逆序 [腾讯笔试题] 难度系数:⭐⭐⭐ ...
- HTTPS加密流程理解
HTTPS加密流程 由于HTTP的内容在网络上实际是明文传输,并且也没有身份验证之类的安全措施,所以容易遭到挟持与攻击 HTTPS是通过SSL(安全套接层)和TLS(安全传输协议)的组合使用,加密TC ...
- rabittmq详解
交换机(exchange): 声明交换机: Name Durability (消息代理重启后,交换机是否还存在) Auto-delete (当所有与之绑定的消息队列都完成了对此交换机的使用后,删掉它) ...
- 微擎 pdo_fetchall() 函数
微擎 pdo_fetchall() 函数 注意点: 该函数内部直接执行原生 SQL 语句 如果在传递表名的时候使用了 tablename .则不加 ims_ 前缀 参数的传递通过 :param 的形式 ...
- linux磁盘分区、格式化、挂载
新建分区的操作步骤,如下图: 1)RAID卡: 机器有没有RAID卡可以在开机时看有没有出现配置RAID什么的提示(亲测),系统运行时有没有,不知道! 服务器大多有这个新加硬盘后不修改raid,开即f ...
- ZeroC ICE的远程调用框架 AMD
继上一篇<ZeroC ICE的远程调用框架>,本篇再来说其中的AMD.(本篇需要重写) 当在ice文件中声明某个接口方法Method为["amd"]后,接口方法在stu ...
- 自制反汇编工具使用实例 其二(使用xmm寄存器初始化对象,以及空的成员函数指针)
在反汇编代码中,当看到xmm寄存器,第一反应是将要进行浮点操作或访问,但是更加多的情况是在使用xmm寄存器初始化局部对象. 下面是自制反汇编工具翻译出来的代码: // -[CALayer setAll ...
- C# 彻底搞懂async/await
前言 Talk is cheap, Show you the code first! private void button1_Click(object sender, EventArgs e) { ...