洛谷 P3648 [APIO2014]序列分割
题意简述
有一个长度为n的序列,分成k + 1非空的块,
选择两个相邻元素把这个块从中间分开,得到两个非空的块。
每次操作后你将获得那两个新产生的块的元素和的乘积的分数。求总得分最大值。
题解思路
f[p][i]=max(f[p−1][j]+sum[j]×(sum[i]−sum[j]))
可以用斜率优化
代码
#include <cstdio>
using namespace std;
typedef long long ll;
int n, k, l, h, t;
int q[110000];
int ans[210][110000];
ll sum[110000];
ll dp[2][110000];
ll sqr(ll x) {return x * x; }
double calc(int i, int j, int l)
{
if (sum[i] == sum[j]) return -1e18;
return (dp[l & 1 ^ 1][j] - sqr(sum[j]) - dp[l & 1 ^ 1][i] + sqr(sum[i])) * 1.0 / (sum[i] - sum[j]);
}
int main()
{
scanf("%d%d", &n, &k);
for (register int i = 1; i <= n; ++i) scanf("%d", &sum[i]), sum[i] += sum[i - 1];
for (register int l = 1; l <= k; ++l)
{
h = t = 0;
for (register int i = 1; i <= n; ++i)
{
while (h < t && calc(q[h], q[h + 1], l) <= sum[i]) ++h;
dp[l & 1][i] = dp[l & 1 ^ 1][q[h]] + sum[q[h]] * (sum[i] - sum[q[h]]);
ans[l][i] = q[h];
while (h < t && calc(q[t - 1], q[t], l) >= calc(q[t], i, l)) --t;
q[++t] = i;
}
}
printf("%lld\n", dp[k & 1][n]);
for (register int i = k, s = n; i >= 1; --i)
printf("%d ", s = ans[i][s]);
}
洛谷 P3648 [APIO2014]序列分割的更多相关文章
- 洛谷 P3648 [APIO2014]序列分割 解题报告
P3648 [APIO2014]序列分割 题目描述 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的 ...
- 洛谷P3648 [APIO2014]序列分割(斜率优化)
传送门 没想到这种多个状态转移的还能用上斜率优化……学到了…… 首先我们可以发现,切的顺序对最终答案是没有影响的 比方说有一个序列$abc$,每一个字母都代表几个数字,那么先切$ab$再切$bc$,得 ...
- 洛谷3648 [APIO2014]序列分割(斜率优化+dp)
首先对于这个题目. qwq 存在一个性质就是,最终的答案只跟你的分割的位置有关,而和顺序无关. 举一个小栗子 \(a\ b\ c\) 将这个东西分成两块. 如果我们先分割\(ab\)之间的话,\(an ...
- P3648 [APIO2014]序列分割(斜率优化dp)
P3648 [APIO2014]序列分割 我们先证明,分块的顺序对结果没有影响. 我们有一个长度为3的序列$abc$ 现在我们将$a,b,c$分开来 随意枚举一种分块方法,如$(ab)(c)$,$(a ...
- [luogu P3648] [APIO2014]序列分割
[luogu P3648] [APIO2014]序列分割 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序 ...
- P3648 [APIO2014]序列分割
传送门 首先容易证明,得分和切的顺序没有关系 所以直接默认先切左边再切右边就好了 然后显然可以 $dp$ 一开始想的是设 $f[i][j]$ 表示切了 $i$ 次,此次把 $j$ 和 $j+1$ 分开 ...
- P3648 [APIO2014]序列分割 斜率优化
题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...
- 【斜率DP】BZOJ 3675:[Apio2014]序列分割
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 1066 Solved: 427[Submit][Statu ...
- BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )
WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...
随机推荐
- Android使用WebView加载H5页面播放视频音频,退出后还在播放问题解决
Android中经常会使用到WebView来加载H5的页面,如果H5页面中有音频或者视频的播放时,还没播放完就退出界面,这个时候会发现音频或者视频还在后台播放,这就有点一脸懵逼了,下面是解决方案: 方 ...
- 关系型数据库MySql简介
什么是关系型数据库? 数据库就是用来存储数据的仓库,是一种特殊的文件. 根据存储的数据不同,划分为关系型数据库和非关系型数据库. 关系型数据库就是指 建立在关系模型基础上的数据库,通俗来讲这种数据库就 ...
- Bzoj 1537: [POI2005]Aut- The Bus 题解 [由暴力到正解]
1537: [POI2005]Aut- The Bus Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 387 Solved: 264[Submit][S ...
- MyBatis从入门到精通(十二):使用collection标签实现嵌套查询
最近在读刘增辉老师所著的<MyBatis从入门到精通>一书,很有收获,于是将自己学习的过程以博客形式输出,如有错误,欢迎指正,如帮助到你,不胜荣幸! 本篇博客主要讲解使用collectio ...
- 前端经常碰到的小知识点-----js篇
一 js 1.可视区宽和高 ① document.documentElement.clientWidth //可视区的宽度 document.documentElement.clientHei ...
- C#5.0新增功能01 异步编程
连载目录 [已更新最新开发文章,点击查看详细] 如果需要 I/O 绑定(例如从网络请求数据或访问数据库),则需要利用异步编程. 还可以使用 CPU 绑定代码(例如执行成本高昂的计算),对编写异步 ...
- vscode在win10 / linux下的.vscode文件夹的配置 (c++/c)
系统方面配置自行查找 linux: launch.json { // 使用 IntelliSense 了解相关属性. // 悬停以查看现有属性的描述. // 欲了解更多信息,请访问: https:// ...
- [leetcode] 147. Insertion Sort List (Medium)
原题 别人的思路 非常简洁 function ListNode(val) { this.val = val; this.next = null; } /** * @param {ListNode} h ...
- Linux 下载文件命令(wget)
wget是Linux最常用的下载命令, 一般的使用方法是: wget + 空格 + 要下载文件的url路径 例如: # wget http://www.linuxsense.org/xxxx/xxx. ...
- PHP 跨域处理
PHP 跨域处理 跨域访问失败是会出现 No 'Access-Control-Allow-Origin' header is present on the requested resource. Or ...