1.pyspark交互式编程

查看群里发的“data01.txt”数据集,该数据集包含了某大学计算机系的成绩,数据格式如下所示:

Tom,DataBase,80

Tom,Algorithm,50

Tom,DataStructure,60

Jim,DataBase,90

Jim,Algorithm,60

Jim,DataStructure,80

……

请根据给定的实验数据,在pyspark中通过编程来计算以下内容:

(1) 该系总共有多少学生;

>>> lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")
>>> res = lines.map(lambda x:x.split(",")).map(lambda x: x[0]) //获取每行数据的第1列
>>> distinct_res = res.distinct() //去重操作
>>> distinct_res.count()//取元素总个数

 答案为:265人

(2) 该系共开设了多少门课程;

>>> lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")
>>> res = lines.map(lambda x:x.split(",")).map(lambda x:x[1]) //获取每行数据的第2列
>>> distinct_res = res.distinct()//去重操作
>>> distinct_res.count()//取元素总个数

 答案为8门

(3) Tom同学的总成绩平均分是多少;

>>> lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")

>>> res = lines.map(lambda x:x.split(",")).filter(lambda x:x[0]=="Tom") //筛选Tom同学的成绩信息

>>> res.foreach(print)

>>> score = res.map(lambda x:int(x[2])) //提取Tom同学的每门成绩,并转换为int类型

>>> num = res.count() //Tom同学选课门数

>>> sum_score = score.reduce(lambda x,y:x+y) //Tom同学的总成绩

>>> avg = sum_score/num // 总成绩/门数=平均分

>>> print(avg)

 Tom同学的平均分为30.8分

(4) 求每名同学的选修的课程门数;

>>> lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")

>>> res = lines.map(lambda x:x.split(",")).map(lambda x:(x[0],1)) //学生每门课程都对应(学生姓名,1),学生有n门课程则有n个(学生姓名,1)

>>> each_res = res.reduceByKey(lambda x,y: x+y) //按学生姓名获取每个学生的选课总数

>>> each_res.foreach(print)

('Lewis', 4)答案共265行

('Mike', 3)

('Walter', 4)

('Conrad', 2)

('Borg', 4)

……

(5) 该系DataBase课程共有多少人选修;

>>> lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")

>>> res = lines.map(lambda x:x.split(",")).filter(lambda x:x[1]=="DataBase")

>>> res.count()

 答案为126人

(6) 各门课程的平均分是多少;

>>> lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")

>>> res = lines.map(lambda x:x.split(",")).map(lambda x:(x[1],(int(x[2]),1))) //为每门课程的分数后面新增一列1,表示1个学生选择了该课程。格式如('ComputerNetwork', (44, 1))

>>> temp = res.reduceByKey(lambda x,y:(x[0]+y[0],x[1]+y[1])) //按课程名聚合课程总分和选课人数。格式如('ComputerNetwork', (7370, 142))

>>> avg = temp.map(lambda x:(x[0], round(x[1][0]/x[1][1],2)))//课程总分/选课人数 = 平均分,并利用round(x,2)保留两位小数

>>> avg.foreach(print)

答案为:

('ComputerNetwork', 51.9)

('Software', 50.91)

('DataBase', 50.54)

('Algorithm', 48.83)

('OperatingSystem', 54.94)

('Python', 57.82)

('DataStructure', 47.57)

('CLanguage', 50.61)

(7)使用累加器计算共有多少人选了DataBase这门课。

>>> lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")

>>> res = lines.map(lambda x:x.split(",")).filter(lambda x:x[1]=="DataBase")//筛选出选了DataBase课程的数据

>>> accum = sc.accumulator(0) //定义一个从0开始的累加器accum

>>> res.foreach(lambda x:accum.add(1))//遍历res,每扫描一条数据,累加器加1

>>> accum.value //输出累加器的最终值

 答案:共有126人

2.编写独立应用程序实现数据去重

对于两个输入文件A和B,编写Spark独立应用程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新文件C。下面是输入文件和输出文件的一个样例,供参考。

输入文件A的样例如下:

20170101    x

20170102    y

20170103    x

20170104    y

20170105    z

20170106    z

输入文件B的样例如下:

20170101    y

20170102    y

20170103    x

20170104    z

20170105    y

根据输入的文件A和B合并得到的输出文件C的样例如下:

20170101    x

20170101    y

20170102    y

20170103    x

20170104    y

20170104    z

20170105    y

20170105    z

20170106    z

 

  实验答案参考步骤如下:

(1)假设当前目录为/usr/local/spark/mycode/remdup,在当前目录下新建一个remdup.py文件,复制下面代码;

from pyspark import SparkContext

#初始化SparkContext

sc = SparkContext('local','remdup')

#加载两个文件A和B

lines1 = sc.textFile("file:///usr/local/spark/mycode/remdup/A")

lines2 = sc.textFile("file:///usr/local/spark/mycode/remdup/B")

#合并两个文件的内容

lines = lines1.union(lines2)

#去重操作

distinct_lines = lines.distinct()

#排序操作

res = distinct_lines.sortBy(lambda x:x)

#将结果写入result文件中,repartition(1)的作用是让结果合并到一个文件中,不加的话会结果写入到两个文件

res.repartition(1).saveAsTextFile("file:///usr/local/spark/mycode/result/file")

(2)最后在目录/usr/local/spark/mycode/remdup下执行下面命令执行程序(注意执行程序时请先退出pyspark shell,否则会出现“地址已在使用”的警告);

$ python3 remdup.py

 (3)在目录/usr/local/spark/mycode/remdup/result下即可得到结果文件part-00000。

3.编写独立应用程序实现求平均值问题

每个输入文件表示班级学生某个学科的成绩,每行内容由两个字段组成,第一个是学生名字,第二个是学生的成绩;编写Spark独立应用程序求出所有学生的平均成绩,并输出到一个新文件中。下面是输入文件和输出文件的一个样例,供参考。

Algorithm成绩:

小明 92

小红 87

小新 82

小丽 90

Database成绩:

小明 95

小红 81

小新 89

小丽 85

Python成绩:

小明 82

小红 83

小新 94

小丽 91

平均成绩如下:

(小红,83.67)

(小新,88.33)

(小明,89.67)

(小丽,88.67)

 

实验答案参考步骤如下:

(1)假设当前目录为/usr/local/spark/mycode/avgscore,在当前目录下新建一个avgscore.py,复制下面代码;

from pyspark import SparkContext

#初始化SparkContext

sc = SparkContext('local',' avgscore')

#加载三个文件Algorithm.txt、Database.txt和Python.txt

lines1 = sc.textFile("file:///usr/local/spark/mycode/avgscore/Algorithm.txt")

lines2 = sc.textFile("file:///usr/local/spark/mycode/avgscore/Database.txt")

lines3 = sc.textFile("file:///usr/local/spark/mycode/avgscore/Python.txt")

#合并三个文件的内容

lines = lines1.union(lines2).union(lines3)

#为每行数据新增一列1,方便后续统计每个学生选修的课程数目。data的数据格式为('小明', (92, 1))

data = lines.map(lambda x:x.split(" ")).map(lambda x:(x[0],(int(x[1]),1)))

#根据key也就是学生姓名合计每门课程的成绩,以及选修的课程数目。res的数据格式为('小明', (269, 3))

res = data.reduceByKey(lambda x,y:(x[0]+y[0],x[1]+y[1]))

#利用总成绩除以选修的课程数来计算每个学生的每门课程的平均分,并利用round(x,2)保留两位小数

result = res.map(lambda x:(x[0],round(x[1][0]/x[1][1],2)))

#将结果写入result文件中,repartition(1)的作用是让结果合并到一个文件中,不加的话会结果写入到三个文件

result.repartition(1).saveAsTextFile("file:///usr/local/spark/mycode/avgscore/result")

(2)最后在目录/usr/local/spark/mycode/avgscore下执行下面命令执行程序(注意执行程序时请先退出pyspark shell,否则会出现“地址已在使用”的警告)。

$ python3 avgscore.py

(3)在目录/usr/local/spark/mycode/avgscore/result下即可得到结果文件part-00000。

 

Spark RDD----pyspark第四次作业的更多相关文章

  1. spark RDD官网RDD编程指南

    http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell Overview(概述) 在较高的层次上, ...

  2. Spark RDD编程-大数据课设

    目录 一.实验目的 二.实验平台 三.实验内容.要求 1.pyspark交互式编程 2.编写独立应用程序实现数据去重 3.编写独立应用程序实现求平均值问题 四.实验过程 (一)pyspark交互式编程 ...

  3. Spark RDD简介与运行机制概述

    RDD工作原理: 主要分为三部分:创建RDD对象,DAG调度器创建执行计划,Task调度器分配任务并调度Worker开始运行. SparkContext(RDD相关操作)→通过(提交作业)→(遍历RD ...

  4. spark RDD 常见操作

    fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.so ...

  5. Spark RDD理解

    目录 ----RDD简介 ----RDD操作类别 ----RDD分区 ----宽依赖和窄依赖作用 ----RDD分区划分器 ----RDD到调度 返回顶部 RDD简介 RDD是弹性分布式数据集(Res ...

  6. Spark RDD/Core 编程 API入门系列之动手实战和调试Spark文件操作、动手实战操作搜狗日志文件、搜狗日志文件深入实战(二)

    1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/ ...

  7. Spark RDD/Core 编程 API入门系列之map、filter、textFile、cache、对Job输出结果进行升和降序、union、groupByKey、join、reduce、lookup(一)

    1.以本地模式实战map和filter 2.以集群模式实战textFile和cache 3.对Job输出结果进行升和降序 4.union 5.groupByKey 6.join 7.reduce 8. ...

  8. Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)论文 | ApacheCN

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

  9. Apache Spark RDD(Resilient Distributed Datasets)论文

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

  10. Spark RDD持久化、广播变量和累加器

    Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内 ...

随机推荐

  1. 模块 序列化 json pickle shelv xml

    序列化 序列化是指把内存里的数据类型转变成字符串,以使其能存储到硬盘或通过网络传输到远程,因为硬盘或网络传输时只能接受bytes. json 模块 json.dump(d,f) json.load(f ...

  2. Java 异常处理与输入输出

    一.异常 1.1 package exception; import java.util.Scanner; public class ArrayIndex { public static void m ...

  3. MATLAB——元胞数组

    一. 1.元胞数组的创建 >> a={;ones(,),:} a = ] [2x3 ;ones(,),:} >> b=[{};{ones(,)},{:}] b = ] [2x3 ...

  4. java程序:转化金额

    在处理财务账款时,需要将转账金额写成大写的.也就是说,如果要转账123456.00元,则需要写成“壹拾贰万叁仟肆佰伍拾陆元整”.所以常常需要通过程序控制自动进行转换.本实例实现了小写金额到大写金额的转 ...

  5. 【webpack 系列】进阶篇

    本文将继续引入更多的 webpack 配置,建议先阅读[webpack 系列]基础篇的内容.如果发现文中有任何错误,请在评论区指正.本文所有代码都可在 github 找到. 打包多页应用 之前我们配置 ...

  6. 逃生 HDU 4857(反向建图 + 拓扑排序)

    逃生 链接 Problem Description 糟糕的事情发生啦,现在大家都忙着逃命.但是逃命的通道很窄,大家只能排成一行. 现在有n个人,从1标号到n.同时有一些奇怪的约束条件,每个都形如:a必 ...

  7. MFC 工具栏ToolBar

    一.创建工具栏 1.在MFC工程,找到“资源视图”界面,右键添加资源,选择Toolbar,点击新建: 2.修改工具条属性: 3.添加工具: 新建ToolBar后,会自动生成一个工具,编辑ID后,工具条 ...

  8. 认识STM32芯片

    STM32中的ST指的是意法半导体,M是Microelectronics的缩写,32表示32位,即意法半导体公司开发的32位微控制器 ST官网:https://www.st.com/content/s ...

  9. C++中的map

    c++中的map类型变量不能为const类型 示例 struct INST{ string name; string type; string func; }; map<string, INST ...

  10. 1015 Reversible Primes (20 分)

    A reversible prime in any number system is a prime whose "reverse" in that number system i ...