Sumdiv
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 22680   Accepted: 5660

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.

15 modulo 9901 is 15 (that should be output).

Source

 
【题目大意】
  求A^B的所有约数的和
【题解】
  把A唯一分解,不难得到答案:
   (1+p1+p1^2+……+p1^(φ1*B)) × (1+p2+p2^2+
  ……+p2^(φ2*B)) ×……× (1+pn+pn^2+……+pn^(φn*B))
  问题转化为等比数列求和,此处MOD为质数,存在逆元,但对于更一般的情况,采用分治法,复杂度多一个Log
  cal(p,k) = p^0 + p^1 + p^2 + ... + p^k
  if k&1
    cal(p,k) = (1 + p^((k + 1)/2))*cal(p, (k-1)/2)
  else
    cal(p,k) = (1 + p^(k/2)) * cal(p, k/2 - 1) + p^k
  快速幂即可
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cmath> const int INF = 0x3f3f3f3f;
const int MAXN = + ;
const int MOD = ; inline void read(int &x)
{
x = ;char ch = getchar();char c = ch;
while(ch > '' || ch < '')c = ch, ch = getchar();
while(ch <= '' && ch >= '')x = x * + ch - '', ch = getchar();
if(c == '-')x = -x;
} int a,b,cnt,xishu[],zhishu[],ans; int pow(int p, int k)
{
int r = , base = p;
for(;k;k >>= )
{
if(k & )r = ((long long)r * base) % MOD;
base = ((long long)base * base % MOD);
}
return r % MOD;
} //求解1 + p + p^2 + p^3 + ... + p^k
int cal(int p, int k)
{
if(k == ) return ;
if(k == ) return (p + ) % MOD;
if(k & ) return ((long long)( + pow(p, (k + )/)) * (long long)(cal(p, (k - )/))%MOD) % MOD;
else return((long long)(pow(p, k/) + ) * (long long)(cal(p, k/ - )) % MOD + pow(p, k)) % MOD;
} int main()
{
read(a),read(b);
register int nn = sqrt(a) + ;
for(register int i = ;i <= nn && a > ;++ i)
if(a % i == )
{
zhishu[++cnt] = i;
while(a % i == ) ++ xishu[cnt], a /= i;
}
if(a > )zhishu[++cnt] = a, xishu[cnt] = ;
ans = ;
for(register int i = ;i <= cnt;++ i)
{
ans *= cal(zhishu[i], xishu[i] * b);
ans %= MOD;
}
printf("%d", ans%MOD);
return ;
}

POJ1848 Sumdiv

POJ1485 Sumdiv的更多相关文章

  1. POJ 1845 Sumdiv

    快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...

  2. Sumdiv(快速幂+约数和)

    Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16244 Accepted: 4044 Description C ...

  3. poj 1845 Sumdiv 约数和定理

    Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...

  4. Sumdiv 等比数列求和

    Sumdiv Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15364   Accepted: 3790 De ...

  5. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  6. 『sumdiv 数学推导 分治』

    sumdiv(POJ 1845) Description 给定两个自然数A和B,S为A^B的所有正整数约数和,编程输出S mod 9901的结果. Input Format 只有一行,两个用空格隔开的 ...

  7. POJ 1845 Sumdiv(逆元)

    题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点   1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...

  8. poj1845 Sumdiv

    poj1845 Sumdiv 数学题 令人痛苦van分的数学题! 题意:求a^b的所有约数(包括1和它本身)之和%9901 这怎么做呀!!! 百度:约数和定理,会发现 p1^a1 * p2^a2 * ...

  9. 一本通1633【例 3】Sumdiv

    1633:[例 3]Sumdiv 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 原题来自:Romania OI 2002 求 ABAB 的所有约数之和 mo ...

随机推荐

  1. 如何在Mac上切换python2和python3以及下载安装包 & 在Mac上如何查找系统自带python2.7的路径

    电脑:系统是Mac OS  系统自带python2.7  自己下载安装了python3.6 问题:一开始我想在终端下执行python2的相关代码   例如 python kNN.py (kNN.py这 ...

  2. Leetcode961. N-Repeated Element in Size 2N Array重复N次的元素

    在大小为 2N 的数组 A 中有 N+1 个不同的元素,其中有一个元素重复了 N 次. 返回重复了 N 次的那个元素. 示例 1: 输入:[1,2,3,3] 输出:3 示例 2: 输入:[2,1,2, ...

  3. 获取计算机以及本机信息API

    获取计算机名: BOOL GetComputerName( LPTSTR lpBuffer, // computer name LPDWORD lpnSize // size of name buff ...

  4. 单例模式以及在C#中的使用

    下面做一些简要的说明. 1. 单例模式(Singleton Pattern),又称作单件模式,当然也有一种诙谐的称谓:单身模式.在经典的GoF所著的<Design Patterns>一书中 ...

  5. 第一个入驻阿里云自营心选商城,如今它已经是营收过亿的SaaS独角兽

    淘宝心选.网易严选.小米有品...越来越多的企业电商自有品牌围绕“低价好物”大做文章,用创新赢得了市场.作为To B从业人员,不由思考:C端的成功是否可以复制在B端? 伴随着互联网下半场的到来,云计算 ...

  6. [LOJ#162]模板题-快速幂2

    <题目链接> 注意:这可能也是一道模板题. 注意2:$p=998224352$ 注意3:对于$100\%$的数据,$n\leq 5 \times 10^6$ 这个题很启发思路,如果直接快速 ...

  7. jeecms 修改后台访问路径

       版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_30553235/article/details/74971414 我使用的是jeecms ...

  8. JQuery学习:事件绑定&入口函数&样式控制

    1.基础语法学习: 1.事件绑定 2.入口函数 3.样式控制 <!DOCTYPE html> <html lang="en"> <head> & ...

  9. 【vue】vue-znly

    老规矩,放下博主的项目地址:https://github.com/wohaiwo/vue-znly 我一直在想给那些开源者取什么名字比较好,怎样才对得起他们开源项目的精神,后来想想,还是叫博主吧.有的 ...

  10. android搭建

    搭建:https://www.cnblogs.com/zoupeiyang/p/4034517.html#1 android sdk manager 翻墙:http://www.androiddevt ...