hdu 1536&&1944 S-Nim sg函数 难度:0
S-Nim
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4770 Accepted Submission(s): 2058
The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.
The players take turns chosing a heap and removing a positive number of beads from it.
The first player not able to make a move, loses.
Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:
Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).
If the xor-sum is 0, too bad, you will lose.
Otherwise, move such that the xor-sum becomes 0. This is always possible.
It is quite easy to convince oneself that this works. Consider these facts:
The player that takes the last bead wins.
After the winning player's last move the xor-sum will be 0.
The xor-sum will change after every move.
Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.
Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?
your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
WWL
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int s[101],k;
int sg[10001];
int n;
int seg(int num){
if(sg[num]!=-1)return sg[num];
bool used[101];
memset(used,0,sizeof(used));
for(int i=0;i<k;i++){
if(num<s[i])break;
used[seg(num-s[i])]=true;
}
for(int i=0;i<101;i++)if(!used[i])return sg[num]=i;
}
int main(){
freopen("C:\\Users\\Administrator\\Desktop\\input.txt","w",stdout);
while(scanf("%d",&k)==1&&k){
for(int i=0;i<k;i++)scanf("%d",s+i);
memset(sg,-1,sizeof(sg));
sort(s,s+k);
int T;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
int sum=0,tmp;
for(int i=0;i<n;i++){scanf("%d",&tmp);sum^=seg(tmp);}
if(sum==0)putchar('L');
else putchar('W');
}
putchar('\n');
}
return 0;
}
hdu 1536&&1944 S-Nim sg函数 难度:0的更多相关文章
- hdu 3032 Nim or not Nim? sg函数 难度:0
Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- HDU 1536 S-Nim (组合游戏+SG函数)
题意:针对Nim博弈,给定上一个集合,然后下面有 m 个询问,每个询问有 x 堆石子 ,问你每次只能从某一个堆中取出 y 个石子,并且这个 y 必须属于给定的集合,问你先手胜还是负. 析:一个很简单的 ...
- hdu 1079 Calendar Game sg函数 难度:0
Calendar Game Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1536 S-Nim (简单sg函数)
题意:首先输入K 表示一个集合的大小 之后输入集合 表示对于这对石子只能去这个集合中的元素的个数 之后输入 一个m 表示接下来对于这个集合要进行m次询问 之后m行 每行输入一个n 表示有n个堆 每 ...
- hdu 1536/1944 / POJ 2960 / ZOJ 3084 S-Nim 博弈论
简单的SG函数应用!!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #inclu ...
- 多校6 1003 HDU5795 A Simple Nim (sg函数)
思路:直接打表找sg函数的值,找规律,没有什么技巧 还想了很久的,把数当二进制看,再类讨二进制中1的个数是必胜或者必败状态.... 打表: // #pragma comment(linker, &qu ...
- HDU 1517 A Multiplication Game (SG函数找规律)
题意:两个玩家玩一个游戏,从 p = 1,开始,然后依次轮流选择一个2 - 9的数乘以 p,问你谁先凑够 p >= n. 析:找规律,我先打了一下SG函数的表,然后就找到规律了 我找到的是: 1 ...
- hdu 1847 博弈基础题 SG函数 或者规律2种方法
Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- hdu 1536/ hdu 1944 S-Nim(sg函数)
S-Nim Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
随机推荐
- vue的ref与$refs
一. ref使用在父组件上 父组件html: <information ref='information'></information> import information ...
- RabbitMQ、Memcache、Redis RabbitMQ
RabbitMQ 解释RabbitMQ,就不得不提到AMQP(Advanced Message Queuing Protocol)协议. AMQP协议是一种基于网络的消息传输协议,它能够在应用或组织之 ...
- presto 0.166安装部署
系统:linux java:jdk 8,64-bit Connector:hive 分布式,node1-3 node1:Coordinator . Discovery service node2-3: ...
- myeclipse自动生成相应对象接收返回值的快捷键
在你要自动生成返回值对象的那一行的末尾(注意一定要将光标点到最后),按Alt+Shift+L:就可以了.
- [入坑系列] Mybatis 中$与#的区别
1.理解 1 #是将传入的值当做字符串的形式,eg:select id,name,age from student where id =#{id},当前端把id值1,传入到后台的时候,就相当于 sel ...
- linux 安装vscode
滚动安装vscode 需要先添加源,然后install 以centos为例: sudo rpm --import https://packages.microsoft.com/keys/microso ...
- Mac下需要安装的一些软件及常用的配置文件
常用软件配置文件 1..gitconfig # This is Git's per-user configuration file. [user] name = 张文 email = zhangwen ...
- eclipse集成tomcat修改字符集参数
问题: 在eclipse 4.4(Luna)中集成tomcat时,直接修改原tomcat目录中的配置文件,不起作用. 有时,我们会修改字符集参数为utf-8,以解决中文乱码问题,改动之后依然乱码…… ...
- Linux命令:chmod、chgrp、chown的区别
chmod是更改文件的权限: chgrp只是更改文件的属组: chown是更改文件的属主与属组. 1.chmod:更改文件的权限 文件权限的设置方式有两种,分别是数字和标记. mode : 权限设定字 ...
- 【bzoj1369】[Baltic2003]Gem(树形dp+结论)
题目传送门:bzoj1369 这题其实有个结论:节点数为n的树,对其染色使相邻节点颜色不同,且总颜色权值最小,所需的颜色数量是$ O(\log n) $的. 所以我们就可以愉快的dp了:$ f[i][ ...