传送门

Description

给你两个正整数\(n,h\),求由\(n\)个点组成的高度大于等于\(h\)的二叉树有多少个

Input

一行两个整数\(n,h\)

Output

一个整数代表答案。

Hint

\(For~All:\)

\(0~\leq~h~\leq~n~\leq~35\)

Solution

数数题,考虑递推。发现高度\(h\)可以作为阶段,于是设计\(f_{i,j}\)为用\(i\)个点做出高度大于等于\(j\)的二叉树,发现无法转移。考虑更换状态。设\(f_{i,j}\)为用\(i\)个点做出高度小于等于\(j\)的二叉树的答案。发现左右子树互不影响,可以乘法原理。

于是可以转移了。最后减一下就是答案

Code

#include<cstdio>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[90];
} template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst=='-') x=-x;
} template<typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x<0) x=-x,putchar('-');
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template<typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template<typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template<typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;} template<typename T>
inline void mswap(T &a,T &b) {
T temp=a;a=b;b=temp;
} const int maxn = 40; int n,h;
ll frog[maxn][maxn]; int main() {
qr(n);qr(h);
for(rg int i=0;i<=n;++i) frog[0][i]=1;
for(rg int i=1;i<=n;++i) {
for(rg int j=1;j<=n;++j) {
for(rg int k=0;k<j;++k) {
frog[j][i]+=frog[k][i-1]*frog[j-k-1][i-1];
}
}
}
qw(frog[n][n]-frog[n][h-1],'\n',true);
return 0;
}

【DP】【CF9D】 How many trees?的更多相关文章

  1. T2980 LR棋盘【Dp+空间/时间优化】

    Online Judge:未知 Label:Dp+滚动+前缀和优化 题目描述 有一个长度为1*n的棋盘,有一些棋子在上面,标记为L和R. 每次操作可以把标记为L的棋子,向左移动一格,把标记为R的棋子, ...

  2. 【10.3校内测试【国庆七天乐!】】【DP+组合数学/容斥】【spfa多起点多终点+二进制分类】

    最开始想的暴力DP是把天数作为一个维度所以怎么都没有办法优化,矩阵快速幂也是$O(n^3)$会爆炸. 但是没有想到另一个转移方程:定义$f[i][j]$表示每天都有值的$i$天,共消费出总值$j$的方 ...

  3. 【DP+树状数组】BZOJ1264-[AHOI2006]基因匹配Match

    [题目大意] 给定n个数和两个长度为n*5的序列,两个序列中的数均有1..n组成,且1..n中每个数恰好出现5次,求两个序列的LCS. [思路] 预处理每个数字在a[i]中出现的五个位置.f[i]示以 ...

  4. BZOJ1079 [SCOI2008]着色方案 【dp记忆化搜索】

    题目 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难看 ...

  5. 【DP|多重背包可行性】POJ-1014 Dividing

    Dividing Time Limit: 1000MS Memory Limit: 10000K Description Marsha and Bill own a collection of mar ...

  6. COGS 862. 二进制数01串【dp+经典二分+字符串】

    862. 二进制数01串 ★   输入文件:kimbits.in   输出文件:kimbits.out   简单对比 时间限制:1 s   内存限制:128 MB USACO/kimbits(译 by ...

  7. CodeForces - 597C Subsequences 【DP + 树状数组】

    题目链接 http://codeforces.com/problemset/problem/597/C 题意 给出一个n 一个 k 求 n 个数中 长度为k的上升子序列 有多少个 思路 刚开始就是想用 ...

  8. hihocoder1475 数组分拆【DP+前缀和优化】

    思路: DP[ i ] 代表以 i 结尾的方案数. dp[i] += sum[i] - sum[j - 1] != 0 ? dp[j] : 0 ; 对于100%的数据,满足1<=N<=10 ...

  9. SPOJ130 【DP·背包选取特性】

    题意: 给你n个任务,每个任务有一个起始时间,持续时间,一个权值: 问你怎么分配得到最大值 思路: 数据好大..百度了一发意识到自己好菜啊!背包的特性. dp[i]代表前 i 个能构成的最大值. 对于 ...

  10. lightoj1145 【DP优化求方案】

    题意: 有一个k面的骰子,然后问你n个骰子朝上的面数字之和=s的方案: 思路: dp[i][j] 代表 前 i 个骰子组成 j 有多少种方案: 显然 dp[i][j] = dp[i - 1][j - ...

随机推荐

  1. Siki_Unity_2-2_NGUI_UI插件学习(3.6.8版本)(未学)

    Unity 2-2 NGUI UI插件学习(3.6.8版本)(未学)

  2. CsvHelper文档-3写

    CsvHelper文档-3写 不用做任何设置,默认的情况下,csvhelper就可以很好的工作了.如果你的类的属性名称和csv的header名称匹配,那么可以按照下面的例子写入: var record ...

  3. [ Continuously Update ] The Paper List of Seq2Seq Tasks ( including Attention Mechanism )

    Papers Published in 2017 Convolutional Sequence to Sequence Learning - Jonas Gehring et al., CoRR 20 ...

  4. 算法笔记(c++)--求一个数的所有质数因子

    算法笔记(c++)--求一个数的所有质数因子 先贴题目: 这题不难,恶心在理解上面.最后看评论知道了怎么回事: 2*2*3*3*5=180 按照这逻辑的话应该输入的数由一系列质数相乘出来,所以每次找到 ...

  5. Linux sync命令的作用分析

    Sync命令   在用reboot命令启动unix系统后,系统提示出错信息,部分应用程序不能正常工作.经仔细检查系统文件,并和初始的正确备份进行比较,发现某些文件确实被破坏了,翻来覆去找不到文件遭破坏 ...

  6. Codeforces Round #613 Div.1 D.Kingdom and its Cities 贪心+虚树

    题目链接:http://codeforces.com/contest/613/problem/D 题意概述: 给出一棵树,每次询问一些点,计算最少删除几个点可以让询问的点两两不连通,无解输出-1.保证 ...

  7. 《Linux内核与分析》第五周

    20135130王川东 一.给MenuOS增加time和time-asm命令 命令:1.强制删除:rm menu -rf 2.克隆:git clone (后跟需要克隆数据所在的位置) 3.自动编译,自 ...

  8. 基础算法学习2-dp

    一.算法题: 最大子阵 给定一个n×m 的矩阵 A,求A 中的一个非空子矩阵,使这个子矩阵中的元素和最大.其中,A 的子矩阵指在 A 中行和列均连续的一部分.输入格式输入的第一行包含两个整数 n,m( ...

  9. java一些知识

    类名前只有两种修饰符:不写(即default,但不能把default写上去)或public.默认不写则此类只能被同一包下的类调用以生成相应的实例.但若是public,则可以被不同包下的类调用以生成其实 ...

  10. web三大组件的加载顺序

    Web三大组件:过滤器组件  监听器组件  Servlet组件 过滤器的顶级接口:javax.servlet.Filter 监听器的顶级接口:javax.servlet.ServletContextL ...