代码:

%% ------------------------------------------------------------------------
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Exameple 8.19 \n\n'); time_stamp = datestr(now, 31);
[wkd1, wkd2] = weekday(today, 'long');
fprintf(' Now is %20s, and it is %8s \n\n', time_stamp, wkd2);
%% ------------------------------------------------------------------------ % Digital Filter Specifications:
wp = 0.2*pi; % digital passband freq in rad
ws = 0.3*pi; % digital stopband freq in rad
Rp = 1; % passband ripple in dB
As = 15; % stopband attenuation in dB % Analog prototype specifications: Inverse Mapping for frequencies
T = 1; Fs = 1/T; % set T = 1
OmegaP = (2/T)*tan(wp/2); % Prewarp(Cutoff) prototype passband freq
OmegaS = (2/T)*tan(ws/2); % Prewarp(cutoff) prototype stopband freq % Analog Chebyshev-2 Prototype Filter Calculation:
[cs, ds] = afd_chb2(OmegaP, OmegaS, Rp, As); % Bilinear Transformation:
[b, a] = bilinear(cs, ds, T); [C, B, A] = dir2cas(b, a) % Calculation of Frequency Response:
[db, mag, pha, grd, ww] = freqz_m(b, a); %% -----------------------------------------------------------------
%% Plot
%% ----------------------------------------------------------------- figure('NumberTitle', 'off', 'Name', 'Exameple 8.19')
set(gcf,'Color','white');
M = 1; % Omega max subplot(2,2,1); plot(ww/pi, mag); axis([0, M, 0, 1.2]); grid on;
xlabel(' frequency in \pi units'); ylabel('|H|'); title('Magnitude Response');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.2, 0.3, M]);
set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.1778, 0.8913, 1]); subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on;
xlabel('frequency in \pi nuits'); ylabel('radians in \pi units'); title('Phase Response');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.2, 0.3, M]);
set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]); subplot(2,2,3); plot(ww/pi, db); axis([0, M, -30, 10]); grid on;
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude in dB ');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.2, 0.3, M]);
set(gca, 'YTickMode', 'manual', 'YTick', [-30, -15, -1, 0]); subplot(2,2,4); plot(ww/pi, grd); axis([0, M, 0, 15]); grid on;
xlabel('frequency in \pi units'); ylabel('Samples'); title('Group Delay');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.2, 0.3, M]);
set(gca, 'YTickMode', 'manual', 'YTick', [0:5:15]);

  运行结果:

《DSP using MATLAB》示例Example 8.19的更多相关文章

  1. 《DSP using MATLAB》Problem 5.19

    代码: function [X1k, X2k] = real2dft(x1, x2, N) %% --------------------------------------------------- ...

  2. 《DSP using MATLAB》 Problem 3.19

    先求模拟信号经过采样后,对应的数字角频率: 明显看出,第3种采样出现假频了.DTFT是以2π为周期的,所以假频出现在10π-2kπ=0处. 代码: %% ----------------------- ...

  3. 《DSP using MATLAB》Problem 2.19

    代码: %% ------------------------------------------------------------------------ %% Output Info about ...

  4. 《DSP using MATLAB》Problem 8.19

    代码: %% ------------------------------------------------------------------------ %% Output Info about ...

  5. DSP using MATLAB 示例 Example3.19

    代码: % Analog Signal Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t)); % Discrete-time Signa ...

  6. DSP using MATLAB 示例Example3.21

    代码: % Discrete-time Signal x1(n) % Ts = 0.0002; n = -25:1:25; nTs = n*Ts; Fs = 1/Ts; x = exp(-1000*a ...

  7. DSP using MATLAB示例Example3.18

    代码: % Analog Signal Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t)); % Continuous-time Fou ...

  8. DSP using MATLAB 示例Example3.23

    代码: % Discrete-time Signal x1(n) : Ts = 0.0002 Ts = 0.0002; n = -25:1:25; nTs = n*Ts; x1 = exp(-1000 ...

  9. DSP using MATLAB 示例Example3.22

    代码: % Discrete-time Signal x2(n) Ts = 0.001; n = -5:1:5; nTs = n*Ts; Fs = 1/Ts; x = exp(-1000*abs(nT ...

  10. DSP using MATLAB 示例Example3.17

随机推荐

  1. Python实现单链表

    定义链表结构: class ListNode: def __init__(self, x): self.val = x self.next = None 输出该链表l1的元素: while l1: p ...

  2. 【性能测试】服务器性能监控、数据采集工具nmon安装使用详解

    nmon nmon是一种在AIX与各种Linux操作系统上广泛使用的监控与分析工具,它能在系统运行过程中实时地捕捉系统资源的使用情况,并且能输出结果到文件中,然后通过nmon_analyzer工具产生 ...

  3. 算法总结1:K-邻近算法

    1. 算法原理: K-邻近算法的原理很简单,就是用你的“邻居”来推断出你的类别.用于离散型数据分析处理. 例子1:如下图有ABCD四个用于参考的样本点,都已知晓自己的坐标位置,这时E来了,不清楚自己的 ...

  4. Js判断是否联网引入不同js

    需求:当百度地图在内网中也能使用. 分析:js判断是否联网,然后根据联网状态加载不同js. 失败案例: 1.直接document.write <script language="jav ...

  5. 我的json

    { "firstName":[ "xMan" ], "members":[ { "name":"X教授&quo ...

  6. 1-13 RHEL7-硬盘介绍和磁盘管理

    熟悉Linux平台下的存储介质,LVM逻辑卷.RAID 磁盘陈列等 大纲: 1-1  硬盘的分类及使用fdisk分区工具       1-1-1 认识硬盘的分类和特性.SCSI.IDE.SAS.SAT ...

  7. SPOJ-CLEANRBT-状压dp

    CLEANRBT - Cleaning Robot #dynamic-programming #bfs Here, we want to solve path planning for a mobil ...

  8. 玲珑oj 1121 思维

    1121 - Reverse the lights Time Limit:2s Memory Limit:256MByte Submissions:376Solved:111 DESCRIPTION ...

  9. day36 爬虫+http请求+高性能

    爬虫 参考博客:http://www.cnblogs.com/wupeiqi/articles/5354900.html http://www.cnblogs.com/wupeiqi/articles ...

  10. 031——VUE中表单控件处理之使用vue控制input和textarea表单项

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...