NOIP组合数选题
前言:
“所有的组合数问题都是好题”
————清华某高材生zhx
组合数问题在近几年的NOIP的考试中多次露面,感觉有必要好好学一学
组合数的常见公式:
C ( i , j ) =
C(i,j) = C( i-1 , j) + C ( i -1 , j -1 ) ;
题目:
计算系数
noip2011提高组day2第1题
输入输出样例
1 1 3 1 2
3
这个题用到了二项式定理,在高二数学选修课本中讲到。不过,对于这个题你不需要知道这个知识,你只需要知道以下几点:
规定(a+b)^k k为指数
1 、 二项式的系数就与杨辉三角有关,即与组合数有关
2、 k为几,就代表是杨辉三角的第几行
3、我们将上述二项式展开后可发现: 越往后的每一项,a的指数是在递减的,而b的指数是在增加的 , 例如:第一项a的指数是k,b的指数是0 ,最后一项a的指数是0,b的指数是k
4、 拓展:根据展开式可发现,二项式的系数是对称的
思路讲解:
我们已知上述信息之后便可轻松解决本题啦
1、二项式的指数是k,根据上面的信息2可知,答案在杨辉三角的第k行
2、根据上述信息4可知,我们求的是杨辉三角的第k行的第m项或者是第n项(对称性)
3、此题与原始组合数不同的是:我们需要在系数上乘上 a 的 最终的值,再乘上 b 最终的值
我们可以思考:如果我们将 a 与 x 等同的看作是一个未知数的话 ,那么如果 x最终变成x^n , a也应该等同的成为 a ^ n
所以答案就是 a的n次方 乘以 b的m次方 乘以 杨辉三角的第k行,第n项
即 系数最终的答案就是 a^n * b^m * C 【k】【m】
4、对于求解 a^n 和 b^m 我们可以用快速幂 ,但是要注意我们在读入a,b之后一定要先取一次模 ,否则我们在快速幂第一次计算 a*a 的时候 会炸掉
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; int c[1009][1009]; int quick_power(int a,int b ,int p){
int ans=1;
while(b>0){
if(b%2==1)ans=(ans*a)%p;
a=(a*a)%p;
b=b/2;
}
return ans;
} int main(){
int a,b,k,n,m;
cin>>a>>b>>k>>n>>m;
a=a%10007;
b=b%10007;
c[1][1]=1;
for(int i=0;i<=k;i++){
c[i][0]=1;
for(int j=1;j<=i;j++){
c[i][j]=(c[i-1][j]+c[i-1][j-1])%10007;
}
} a=quick_power(a,n,10007);
b=quick_power(b,m,10007); cout<<((a*b)%10007*c[k][n])%10007<<endl; return 0;
}
组合数问题
NOIP提高组2016
输入输出样例
1 2
3 3
1
2 5
4 5
6 7
0
7
思路讲解
既然上面那题都做完了,这个题也就不难了
这个题是让你找在不超过它给你的 i 和 j 的范围之内求组合数 答案是 k 的倍数的数
我们可以先预处理出2000*2000 以内的所有的组合数
但是如果即使这样预处理了,我们对于每一组测试数据都暴力的去计算一遍有多少对的话,我们可以发现 2000*2000* 10000 是明显过不掉这道题的
我们观察一下,我们的k值是一直不变的 ,所以我们可以对于当前的每一个C( i , j) 我们都可以用前缀和求出他之前有多少个 ,如果当前这个数是k的倍数的话(即:C( i, j )%k==0) 我们就把刚求出来的前缀和+1就是当前的答案
1 #include<iostream>
2 #include<cstdio>
3 #include<cstring>
4
5 using namespace std;
6
7 int c[2020][2020];
8 int a[2020][2020];
9 int t,k;
10 void C(){
11 for(int i=0;i<=2018;i++){
12 c[i][0]=1;
13 for(int j=1;j<=i;j++){
14 c[i][j]=(c[i-1][j]+c[i-1][j-1])%k;
15 }
16 }
17 }
18
19
20
21
22 int main(){
23 c[1][1]=1;
24 scanf("%d%d",&t,&k);
25 C();
26 for(int i=2;i<=2018;i++){
27 for(int j=1;j<=i;j++){
28 a[i][j]=a[i-1][j]+a[i][j-1]-a[i-1][j-1];
29 if(c[i][j]==0)a[i][j]=a[i][j]+1;
30 }
31 a[i][i+1]=a[i][i];
32 }
33 for(int i=1;i<=t;i++){
34 int n,m;
35 scanf("%d%d",&n,&m);
36 if(m>n)m=n;
37 printf("%d\n",a[n][m]);
38 }
39 return 0;
40 }
最后加一道最简单的组合数问题练练手吧
扑克牌
附上链接:https://www.luogu.org/problemnew/show/P1358#sub
End.
NOIP组合数选题的更多相关文章
- 历年NOIP选题题解汇总
联赛前上vijos板刷往年联赛题,使用在线编辑编写代码,祝我rp++. 废话不多说,挑比较有意思的记一下. 题目是按照年份排序的,最早只到了03年. 有些题目因为 我还没写/很早之前写的忘了 所以就没 ...
- noip 2016 day2 t1组合数问题
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- NOIP 2016 提高组 复赛 Day2T1==洛谷2822 组合数问题
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- NOIP 2016 组合数问题
洛谷 P2822 组合数问题 洛谷传送门 JDOJ 3139: [NOIP2016]组合数问题 D2 T1 JDOJ传送门 Description 组合数Cnm表示的是从n个物品中选出m个物品的方案数 ...
- 牛客NOIP暑期七天营-提高组6C:分班问题 (组合数)
题意:A班有N个人,B班有M个人,现在要组成一个新的班级C班,为了公平,从AB班各抽相同人数的人. 现在求所有方案中,人数之和是多少. 思路:即求Σ k*C(N,k)*C(M,k); 先忽略这个 ...
- 纪中集训2020.02.05【NOIP提高组】模拟B 组总结反思——【佛山市选2010】组合数计算,生成字符串 PPMM
目录 JZOJ2290. [佛山市选2010]组合数计算 比赛时 之后 JZOJ2291. [佛山市选2010]生成字符串 比赛时 之后 JZOJ2292. PPMM 比赛时 之后 JZOJ2290. ...
- 【noip 2016】 组合数问题(problem)
杨辉三角形求组合数问题 原题点这里 #include <iostream> #include <cmath> using namespace std; long long a[ ...
- 2018.10.23 NOIP训练 Leo的组合数问题(组合数学+莫队)
传送门 好题. 考察了莫队和组合数学两个知识板块. 首先需要推出单次已知n,mn,mn,m的答案的式子. 我们令f[i]f[i]f[i]表示当前最大值为第iii个数的方案数. 显然iii之后的数都是单 ...
- Noip模拟题 Matrix [递推,组合数]
Matrix 时间限制: 1 Sec 内存限制: 512 MB 题目描述 小 z 的女朋友送给小 z 一个 n × n 的矩阵.但是矩阵实在太大了,小 z 的女朋友拿不动,只能带给他两个长度为 n ...
随机推荐
- Spring Boot Security 国际化 多语言 i18n 趟过巨坑
网上很多的spring boot国际化的文章都是正常情况下的使用方法 如果你像我一样用了Spring Security 那么在多语言的时候可能就会遇到一个深渊 Spring Security里面的异常 ...
- 拍摄、剪辑vlog的思路
这篇文章是看了很多狂阿弥_ 的作品后 产生的一些小小总结.这些技法只是锦上添花,阿弥作品真正好的地方在于他细腻的情感,真实的对白,和打动人心的满分作文. 优秀的Vlog ,在于它和观众产生的情感共鸣. ...
- DHCP最佳实践(三)
这是Windows DHCP最佳实践和技巧的最终指南. 如果您有任何最佳做法或技巧,请在下面的评论中发布它们. 在本指南(三)中,我将分享以下DHCP最佳实践和技巧. 仅在需要时才使用IP冲突检测 运 ...
- egret 解决游戏loading前的黑屏
一.问题 egret游戏loading界面的制作可以参考这个,我就不多赘述啦,步骤也比较详细<Egret制作Loading页面及分步加载资源教程>. 后面我发现即便加上loading,在游 ...
- 定制个性化的GUI
你现在还在使用SAP GUI710或者是GUI720,又或者更早的640等吗?那么古董先生,推荐您使用GUI730吧,您可能会730好在哪?那我建议您去百度或者Google问吧.对于新的GUI730, ...
- JMM在X86下的原理与实现
JMM在X86下的原理与实现 Java的happen-before模型 众所周知 Java有一个happen-before模型,可以帮助程序员隔离各个平台多线程并发的复杂性,只要Java程序员遵守ha ...
- luogu P1453 城市环路
题目描述 整个城市可以看做一个N个点,N条边的单圈图(保证图连通),唯一的环便是绕城的环路.保证环上任意两点有且只有2条路径互通.图中的其它部分皆隶属城市郊区. 现在,有一位名叫Jim的同学想在B市开 ...
- Java开发工具类集合
Java开发工具类集合 01.MD5加密工具类 import java.security.MessageDigest; import java.security.NoSuchAlgorithmExce ...
- 深度学习DeepLearning技术实战(12月18日---21日)
12月线上课程报名中 深度学习DeepLearning(Python)实战培训班 时间地点: 2020 年 12 月 18 日-2020 年 12 月 21日 (第一天报到 授课三天:提前环境部署 电 ...
- Linux下运行java报错:Error: Could not find or load main class SocketIOPropertites
[root@node01 testfileio]# javac SocketIOPropertites.java && java Soc ketIOPropertitesError: ...