洛谷 题解 P1736 【创意吃鱼法】
题目大意
给出一个 \(n \times m \ (1 \leq n, \ m \leq 2500)\) 的 \(01\) 矩阵,让你在其中找到一个最大的子矩阵使得该子矩阵除了一条对角线上的数字均为 \(1\) 之外,其他数字均为 \(0\) 。
思路
Level 1
暴力枚举每一个子矩阵,然后判断该矩阵是否为正方形且满足要求。
时间复杂度十分可观地达到了 $ O(n^3 m^3) ≈ O(n^6)$
Level 1.5
可以在 Level 1 的基础上,在枚举的时候就保证构造了正方形,时间复杂度 $ O(nm \times min(n, m)^3) ≈ O(n^5)$
Level 2
可以用 $ DP $ ,这里给出正方形的 \(1\) 对角线是从左下角到右上角的情况(例如:
)
如果能够继承右上角的方格,那么 \(f[i][j] = f[i - 1][j + 1] + 1\)
否则,可以 \(O(n)\) 枚举一下可以继承多少。
最坏时间复杂度 \(O(n^3)\),调的好可以过此题。
Level 2.5
可以用前缀和优化,在判断能够继承多少的时候用二分,最坏时间复杂度 \(O(n^2 log_{{ }_2}n)\),基本上可以过此题。
Level 3
<-- 正解警告 -->
预处理出每个格子最多可以向左,向上,向右延伸多少个格子,使这些格子中的数都是 \(0\) (不包括这个格子)
然后对于每个格子,尝试以这个格子为左下角(右下角)建立一个子矩阵,不行就继承上一次 \(DP\) 的结果。
\(f[i][j]\) 表示以 \(i, \ j\) 为左下角(右下角)建立的子矩阵的大小。
(在实际实现的时候,两次 \(DP\) 的结果被我放在了同一个数组里面)
Code
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#define Max_N 103
using namespace std;
template <typename Int>
Int read() {
char ch = getchar();
while (!isdigit(ch)) ch = getchar();
Int a = (ch & 15);
ch = getchar();
while (isdigit(ch)) {
a = (a + (a << 2) << 1) + (ch & 15);
ch = getchar();
}
return a;
}
int n, m, a[2503][2503];
int lef[2503][2503] = {0}, upp[2503][2503] = {0}, rig[2503][2503] = {0};
int f[2503][2503] = {0};
int main()
{
n = read<int>();
m = read<int>();
for (register int i = 1; i <= n; i++) {
for (register int j = 1; j <= m; j++) {
a[i][j] = read<int>();
if (!a[i][j]) {
lef[i][j] = lef[i][j - 1] + 1;
upp[i][j] = upp[i - 1][j] + 1;
}
}
}
for (register int i = 1; i <= n; i++) {
for (register int j = m; j >= 1; j--) {
if (!a[i][j]) {
rig[i][j] = rig[i][j + 1] + 1;
}
}
}
register int ans = 0;
for (register int i = 1; i <= n; i++) {
for (register int j = 1; j <= m; j++) if (a[i][j]) {
f[i][j] = min(min(lef[i][j - 1], upp[i - 1][j]),
f[i - 1][j - 1]) + 1;
if (f[i][j] > ans) ans = f[i][j];
}
}
memset(f, 0, sizeof(f));
for (register int i = 1; i <= n; i++) {
for (register int j = m; j >= 1; j--) if (a[i][j]) {
f[i][j] = min(min(rig[i][j + 1], upp[i - 1][j]),
f[i - 1][j + 1]) + 1;
if (f[i][j] > ans) ans = f[i][j];
}
}
printf("%d", ans);
return 0;
}
最后,祝你们好运!
洛谷 题解 P1736 【创意吃鱼法】的更多相关文章
- P1387 最大正方形&&P1736 创意吃鱼法
P1387 最大正方形 P1736 创意吃鱼法 两道类似的$DP$ 转移方程基本上类似于$f[i][j]=min(f[i-1][j-1],min(f[i][j-1],f[i-1][j]))$ 考虑构成 ...
- 洛谷 P1736 创意吃鱼法
题目描述 题目链接:https://www.luogu.org/problemnew/show/P1736 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢( ...
- 洛谷 P1736 创意吃鱼法 Label:dp || 前缀和
题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...
- 洛谷P1736 创意吃鱼法 dp
正解:dp 解题报告: 早就想写dp的题目辣!我发现我的dp好差啊QAQ所以看到列表的小朋友写dp的题目就跟着他们的步伐做下题好辣QwQ 这题的话没有那——么难,大概说下趴QwQ 首先说下题意 前面一 ...
- 洛谷 P1736 创意吃鱼法(多维DP)
题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...
- 洛谷P1736 创意吃鱼法
题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...
- P1387 最大正方形 && P1736 创意吃鱼法(DP)
题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...
- P1736 创意吃鱼法 图的DP
题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...
- P1736 创意吃鱼法
题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...
- P1736 创意吃鱼法80
题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...
随机推荐
- VLAN实验(4)单臂路由
1.选择1台Router路由器.2台S3700交换机和4台pc机,并根据实验编址完成此拓扑图. 2.对交换机mengyu-S2建立VLAN (1)建立两个VLAN,VLAN10和VLAN20,并添加描 ...
- ACE框架 基于共享内存的分配器 (算法设计)
继承上一篇<ACE框架 基于共享内存的分配器设计>,本篇分析算法部分的设计. ACE_Malloc_T模板定义了这样一个分配器组件 分配器组件聚合了三个功能组件:同步组件ACE_LOCK, ...
- vant-ui的van-area使用
由于官方例子中并没有太多详情,因此记录之,方便以后使用. 1.配置 :area-list="areaList",以初始化全部省市区的数据,其中area.js文件在官方可以下载,放于 ...
- 使用Docker搭建maven私服 及常规使用方法
安装-登录-配置 下载镜像 docker pull sonatype/nexus3 运行 docker run -d -p 9998:8081 --name nexus --restart=alway ...
- kafka-manager新手安装入门指南
Kafka-manager安装教程 使用环境 ubuntu18.04 Java 8 一.下载kafka 官网下载地址如下 https://www.apache.org/dyn/closer.cgi?p ...
- 【NHOI2018】扑克游戏
[问题描述] 有一种别样“小猫钓鱼”扑克游戏.有 N 张牌,每张牌都有一个花色和点数.游戏的规则:扑克接龙时,若前面有同样花色的牌,你可以将这两张牌连同之间的牌都取走,得到的分值为取走牌点数之和.这里 ...
- day 41 css固定位置 以及小米商城项目
.如何让一个绝对定位的盒子居中 left:%; margin-left:- 宽度的一半 .固定定位 position: fixed; ()脱标 参考点:浏览器的左上角 作用:固定导航栏 返回顶部 小广 ...
- SpringBoot时间参数处理完整解决方案
在JavaWeb程序的开发过程中,接口是前后端对接的主要窗口,而接口参数的接收有时候是一个令人头疼的事情,这其中最困扰程序猿的,应该是时间参数的接收. 比如:设置一个用户的过期时间,前端到底以什么格式 ...
- 程序员的算法课(18)-常用的图算法:广度优先(BFS)
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...
- xpath的|
xpath的| 相当与交集 本爬虫爬取的是热门城市和全国城市,但是由于爬取的规则不同,所以在同一个xpath中使用了两种规则 import requests from lxml import etre ...