【LeetCode】4. Median of Two Sorted Arrays 寻找两个正序数组的中位数
作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
公众号:负雪明烛
本文关键词:数组,中位数,题解,leetcode, 力扣,python, c++, java
题目地址:https://leetcode.com/problems/median-of-two-sorted-arrays/
题目描述
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
You may assume nums1 and nums2 cannot be both empty.
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
题目大意
找两个各自有序数组的中位数。
解题方法
二分查找
题目给了一个很强的提示:O(log(m + n))的时间复杂度,基本确定了要使用二分查找。
说实话,想了很久不知道怎么解决,最后参考的是花花酱和另外一个大神的做法,我觉得自己表述会很乏力,因此推荐大家看上面这两个视频。
核心思想是找到nums1的一个划分位置m1,与nums2中的另一个位置m2 = k - m1,使得两个数组的左边全部都比两个数组的右边小。如果理解了这个题,应该会对二分查找有了深刻的理解。

C++代码如下:
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int M = nums1.size();
int N = nums2.size();
if (M > N) return findMedianSortedArrays(nums2, nums1);
int L = M + N;
int k = (L + 1) / 2; //总共左边需要多少个元素
int l = 0, r = M; // 对于nums1而言
int m1 = 0, m2 = 0;
while (l < r) {
m1 = l + (r - l) / 2; // nums1的分割位置,左边的元素个数
m2 = k - m1; // nums2的分割位置,左边的元素个数
if (nums1[m1] < nums2[m2 - 1]) {
l = m1 + 1;
} else {
r = m1;
}
}
m1 = l;
m2 = k - l;
double c1 = max(m1 <= 0 ? INT_MIN : nums1[m1 - 1],
m2 <= 0 ? INT_MIN : nums2[m2 - 1]);
if (L & 1)
return c1;
double c2 = min(m1 >= M ? INT_MAX : nums1[m1],
m2 >= N ? INT_MAX : nums2[m2]);
return (c1 + c2 ) / 2;
}
};
参考资料:
https://zxi.mytechroad.com/blog/algorithms/binary-search/leetcode-4-median-of-two-sorted-arrays/
https://www.youtube.com/watch?v=LPFhl65R7ww
日期
2019 年 9 月 15 日 —— 中秋假期的最后一天啦,刷题加油~
【LeetCode】4. Median of Two Sorted Arrays 寻找两个正序数组的中位数的更多相关文章
- leetcode 4. Median of Two Sorted Arrays 寻找两个正序数组的中位数(困难)
一.题目大意 标签: 查找 https://leetcode.cn/problems/median-of-two-sorted-arrays 给定两个大小分别为 m 和 n 的正序(从小到大)数组 n ...
- leetcode-4. 寻找两个正序数组的中位数
leetcode-4. 寻找两个正序数组的中位数. 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2. 请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(l ...
- Leetcode随缘刷题之寻找两个正序数组的中位数
我一上来没读清题,想着这题这么简单,直接就上手写了: package leetcode.day_12_05; import java.util.ArrayList; import java.util. ...
- 微软面试题: LeetCode 4. 寻找两个正序数组的中位数 hard 出现次数:3
题目描述: 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2.请你找出并返回这两个正序数组的中位数. 进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决 ...
- leetcode 刷题(数组篇)4题 寻找两个正序数组的中位数(二分查找)
题目描述 给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2.请你找出并返回这两个正序数组的 中位数 . 示例 1: 输入:nums1 = [1,3], nums2 = ...
- [LeetCode]4.寻找两个正序数组的中位数(Java)
原题地址: median-of-two-sorted-arrays 题目描述: 示例 1: 输入:nums1 = [1,3], nums2 = [2] 输出:2.00000 解释:合并数组 = [1, ...
- Leetcode4. 寻找两个正序数组的中位数
> 简洁易懂讲清原理,讲不清你来打我~ 输入两个递增数组,输出中位数: Median of Two Sorted Arrays[H]——两个有序数组中值问题
我现在在做一个叫<leetbook>的免费开源书项目,力求提供最易懂的中文思路,目前把解题思路都同步更新到gitbook上了,需要的同学可以去看看 书的地址:https://hk029.g ...
- 【算法之美】求解两个有序数组的中位数 — leetcode 4. Median of Two Sorted Arrays
一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/ ...
随机推荐
- php-fpm一个PHPFastCGI进程管理器
PHP-FPM(FastCGI Process Manager:FastCGI进程管理器)是一个PHPFastCGI管理器,对于PHP 5.3.3之前的php来说,是一个补丁包 [1] ,旨在将Fa ...
- EXCEL-REPLACE()替换字符串最后几位 删除字符串最后几位
字符串 0M5(烈焰红) 我要删除最后一个字符")" 公式=REPLACE(ASC(字符串),LEN(ASC(字符串)),1,"") 解释:=REPLAC ...
- Python time&datetime模块
1.time&datetime模块 time&datetime是时间模块,常用以处理时间相关问题 time.time() #返回当前时间的时间戳timestamp time.sleep ...
- A Child's History of England.33
To strengthen his power, the King with great ceremony betrothed his eldest daughter Matilda, then a ...
- day 03Linux修改命令提示符
day 03Linux修改命令提示符 昨日回顾 1.选择客户机操作系统: Microsoft Windows # 一次只能安装一台电脑 Linux(推荐) VMware ESX # 服务器版本VNwa ...
- Spark(四)【RDD编程算子】
目录 测试准备 一.Value类型转换算子 map(func) mapPartitions(func) mapPartitions和map的区别 mapPartitionsWithIndex(func ...
- KMP算法中的next函数
原文链接:http://blog.csdn.net/joylnwang/article/details/6778316/ 其实后面大段的代码都可以不看 KMP的关键是next的产生 这里使用了中间变量 ...
- gitlab之实战部署
#:准备Java环境,安装jdk root@ubuntu:~# cd /usr/local/src/ root@ubuntu:/usr/local/src# ls jdk-8u191-linux-x6 ...
- 【Office】【Excel】将多个工作薄合为一个工作薄
前提:工作薄首行不能有合并的单元格 准备工作:将要合并的工作簿放在一个文件夹里面,文件夹中不能有乱七八糟的东西,只能有你要合并的工作薄 操作步骤:在此文件夹下创建Excel表格并打开,按下alt+F1 ...
- 使用wesocket从 rabbitMQ获取实时数据
rabbitmq支持stomp组件,通过stomp组件和websocket可以从rabbitMQ获取实时数据.这里分享一个demo: 使用时需要引入的js ,用到了sock.js和stomp.js & ...