spark中job stage task关系
- 目标:用美国 1880 - 2014 年新生婴儿的数据来做做简单的统计
- 数据源:https://catalog.data.gov
- 数据格式:
- 每年的新生婴儿数据在一个文件里面
- 每个文件的每一条数据格式:姓名,性别,新生人数
- job : A job is triggered by an action, like count() or saveAsTextFile(). Click on a job to see information about the stages of tasks inside it. 理解了吗,所谓一个 job,就是由一个 rdd 的 action 触发的动作,可以简单的理解为,当你需要执行一个 rdd 的 action 的时候,会生成一个 job。
- stage : stage 是一个 job 的组成单位,就是说,一个 job 会被切分成 1 个或 1 个以上的 stage,然后各个 stage 会按照执行顺序依次执行。
- task : A unit of work within a stage, corresponding to one RDD partition。即 stage 下的一个任务执行单元,一般来说,一个 rdd 有多少个 partition,就会有多少个 task,因为每一个 task 只是处理一个 partition 上的数据。从 web ui 截图上我们可以看到,这个 job 一共有 2 个 stage,66 个 task,平均下来每个 stage 有 33 个 task,相当于每个 stage 的数据都有 33 个 partition [注意:这里是平均下来的哦,并不都是每个 stage 有 33 个 task,有时候也会有一个 stage 多,另外一个 stage 少的情况,就看你有没有在不同的 stage 进行 repartition 类似的操作了。

1.3 运行流程之 : job
1.4 运行流程之 : stage

- 第一个 stage,即截图中 stage id 为 0 的 stage,其执行了sc.wholeTextFiles().map().flatMap().map().reduceByKey() 这几个步骤,因为这是一个 Shuffle 操作,所以后面会有 Shuffle Read 和 Shuffle Write。具体来说,就是在 stage 0 这个 stage 中,发生了一个 Shuffle 操作,这个操作读入 22.5 MB 的数据,生成 41.7 KB 的数据,并把生成的数据写在了硬盘上。
- 第二个 stage,即截图中 stage id 为 1 到 stage,其执行了 collect() 这个操作,因为这是一个 action 操作,并且它上一步是一个 Shuffle 操作,且没有后续操作,所以这里 collect() 这个操作被独立成一个 stage 了。这里它把上一个 Shuffle 写下的数据读取进来,然后一起返回到 driver 端,所以这里可以看到他的 Shuffle Read 这里刚好读取了上一个 stage 写下的数据。
spark中job stage task关系的更多相关文章
- spark 中划分stage的思路
窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,表现为 一个父RDD的分区对应于一个子RDD的分区 两个父RDD的分区对应于一个子RDD 的分区. 宽依赖指子RDD的每个分区都要依赖于父RD ...
- 【Spark篇】--Spark中的宽窄依赖和Stage的划分
一.前述 RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖. Spark中的Stage其实就是一组并行的任务,任务是一个个的task . 二.具体细节 窄依赖 父RDD和子RDD parti ...
- 解决spark中遇到的数据倾斜问题
一. 数据倾斜的现象 多数task执行速度较快,少数task执行时间非常长,或者等待很长时间后提示你内存不足,执行失败. 二. 数据倾斜的原因 常见于各种shuffle操作,例如reduceByKey ...
- Spark中Task,Partition,RDD、节点数、Executor数、core数目的关系和Application,Driver,Job,Task,Stage理解
梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数.Executor数.core数目的关系. 输入可能以多个文件的形式存储在H ...
- 【原】Spark中Job如何划分为Stage
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Job的提交 http://www.cnblogs.com/yourarebest/p/5342404.html 1.Spark中 ...
- Spark中Task,Partition,RDD、节点数、Executor数、core数目(线程池)、mem数
Spark中Task,Partition,RDD.节点数.Executor数.core数目的关系和Application,Driver,Job,Task,Stage理解 from:https://bl ...
- Spark中资源与任务的关系
在介绍Spark中的任务和资源之前先解释几个名词: Dirver Program:运行Application的main函数(用户提交的jar包中的main函数)并新建SparkContext实例的程序 ...
- 【原】 Spark中Task的提交源码解读
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Stage的提交 http://www.cnblogs.com/yourarebest/p/5356769.html Spark中 ...
- 【原】Spark中Stage的提交源码解读
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Job如何划分为Stage http://www.cnblogs.com/yourarebest/p/5342424.html 1 ...
随机推荐
- 将本地的react项目代码打包到服务器
打包过程 连接服务器 ssh root@xx.xx.xx.xx(服务器IP) 定位到当前项目目录 cd /path/projectName 更新代码到服务器 git pull 执行打包命令(这里我创建 ...
- 【LeetCode】401. Binary Watch 解题报告(Java & Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 java解法 Python解法 日期 [LeetCo ...
- 【九度OJ】题目1107:搬水果 解题报告
[九度OJ]题目1107:搬水果 解题报告 标签(空格分隔): 九度OJ http://ac.jobdu.com/problem.php?pid=1107 题目描述: 在一个果园里,小明已经将所有的水 ...
- 【LeetCode】15. 3Sum 三数之和
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人公众号:负雪明烛 本文关键词:3sum, 三数之和,题解,leetcode, 力扣,P ...
- 【LeetCode】209. Minimum Size Subarray Sum 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/minimum- ...
- 【LeetCode】216. Combination Sum III 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述: 题目大意 解题方法 方法一:DFS 方法二:回溯法 日期 题目地址:h ...
- J. Bottles
J. Bottles time limit per test 2 seconds memory limit per test 512 megabytes input standard input ou ...
- hdu 5592 ZYB's Premutation(线段树优化)
设f_ifi是第ii个前缀的逆序对数,p_ipi是第ii个位置上的数,则f_i-f_{i-1}fi−fi−1是ii前面比p_ipi大的数的个数.我们考虑倒着做,当我们处理 ...
- window11连接局域网共享失败处理办法
第一步1.按 Win + R 组合键,打开运行,并输入:gpedit.msc 命令,确定或回车,可以快速打开本地组策略编辑器2.本地组策略编辑器窗口中,依次展开到:计算机配置 - 管理模板 - 网络 ...
- 你真的会用react hooks?看看eslint警告吧!(如何发请求、提升代码性能等问题)
前言 看过几个react hooks 的项目,控制台上几百条警告,大多是语法不规范,react hooks 使用有风险,也有项目直接没开eslint.当然,这些项目肯定跑起来了,因为react自身或者 ...