spark中job stage task关系
- 目标:用美国 1880 - 2014 年新生婴儿的数据来做做简单的统计
- 数据源:https://catalog.data.gov
- 数据格式:
- 每年的新生婴儿数据在一个文件里面
- 每个文件的每一条数据格式:姓名,性别,新生人数


- job : A job is triggered by an action, like count() or saveAsTextFile(). Click on a job to see information about the stages of tasks inside it. 理解了吗,所谓一个 job,就是由一个 rdd 的 action 触发的动作,可以简单的理解为,当你需要执行一个 rdd 的 action 的时候,会生成一个 job。
- stage : stage 是一个 job 的组成单位,就是说,一个 job 会被切分成 1 个或 1 个以上的 stage,然后各个 stage 会按照执行顺序依次执行。
- task : A unit of work within a stage, corresponding to one RDD partition。即 stage 下的一个任务执行单元,一般来说,一个 rdd 有多少个 partition,就会有多少个 task,因为每一个 task 只是处理一个 partition 上的数据。从 web ui 截图上我们可以看到,这个 job 一共有 2 个 stage,66 个 task,平均下来每个 stage 有 33 个 task,相当于每个 stage 的数据都有 33 个 partition [注意:这里是平均下来的哦,并不都是每个 stage 有 33 个 task,有时候也会有一个 stage 多,另外一个 stage 少的情况,就看你有没有在不同的 stage 进行 repartition 类似的操作了。
1.3 运行流程之 : job

1.4 运行流程之 : stage


- 第一个 stage,即截图中 stage id 为 0 的 stage,其执行了sc.wholeTextFiles().map().flatMap().map().reduceByKey() 这几个步骤,因为这是一个 Shuffle 操作,所以后面会有 Shuffle Read 和 Shuffle Write。具体来说,就是在 stage 0 这个 stage 中,发生了一个 Shuffle 操作,这个操作读入 22.5 MB 的数据,生成 41.7 KB 的数据,并把生成的数据写在了硬盘上。
- 第二个 stage,即截图中 stage id 为 1 到 stage,其执行了 collect() 这个操作,因为这是一个 action 操作,并且它上一步是一个 Shuffle 操作,且没有后续操作,所以这里 collect() 这个操作被独立成一个 stage 了。这里它把上一个 Shuffle 写下的数据读取进来,然后一起返回到 driver 端,所以这里可以看到他的 Shuffle Read 这里刚好读取了上一个 stage 写下的数据。
spark中job stage task关系的更多相关文章
- spark 中划分stage的思路
窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,表现为 一个父RDD的分区对应于一个子RDD的分区 两个父RDD的分区对应于一个子RDD 的分区. 宽依赖指子RDD的每个分区都要依赖于父RD ...
- 【Spark篇】--Spark中的宽窄依赖和Stage的划分
一.前述 RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖. Spark中的Stage其实就是一组并行的任务,任务是一个个的task . 二.具体细节 窄依赖 父RDD和子RDD parti ...
- 解决spark中遇到的数据倾斜问题
一. 数据倾斜的现象 多数task执行速度较快,少数task执行时间非常长,或者等待很长时间后提示你内存不足,执行失败. 二. 数据倾斜的原因 常见于各种shuffle操作,例如reduceByKey ...
- Spark中Task,Partition,RDD、节点数、Executor数、core数目的关系和Application,Driver,Job,Task,Stage理解
梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数.Executor数.core数目的关系. 输入可能以多个文件的形式存储在H ...
- 【原】Spark中Job如何划分为Stage
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Job的提交 http://www.cnblogs.com/yourarebest/p/5342404.html 1.Spark中 ...
- Spark中Task,Partition,RDD、节点数、Executor数、core数目(线程池)、mem数
Spark中Task,Partition,RDD.节点数.Executor数.core数目的关系和Application,Driver,Job,Task,Stage理解 from:https://bl ...
- Spark中资源与任务的关系
在介绍Spark中的任务和资源之前先解释几个名词: Dirver Program:运行Application的main函数(用户提交的jar包中的main函数)并新建SparkContext实例的程序 ...
- 【原】 Spark中Task的提交源码解读
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Stage的提交 http://www.cnblogs.com/yourarebest/p/5356769.html Spark中 ...
- 【原】Spark中Stage的提交源码解读
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Job如何划分为Stage http://www.cnblogs.com/yourarebest/p/5342424.html 1 ...
随机推荐
- mkdir创建目录时,如果上级目录没有是创建不成功的
mkdir创建目录时,如果上级目录没有是创建不成功的 ,此时必须用 mkdirs()方法方可.
- std::function介绍 -转载
类模版std::function是一种通用.多态的函数封装.std::function的实例可以对任何可以调用的目标实体进行存储.复制.和调用操作,这些目标实体包括普通函数.Lambda表达式.函数指 ...
- C# 使用Fluent API 创建自己的DSL
DSL(Domain Specified Language)领域专用语言是描述特定领域问题的语言,听起来很唬人,其实不是什么高深的东西.看一下下面的代码: using FlunetApiDemo; v ...
- 痞子衡嵌入式:揭秘i.MXRT1170上用J-Link连接复位后PC总是停在0x223104的原因
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是i.MXRT1170上安全调试策略实现对JLink调试的影响. 痞子衡之前写过一篇旧文 <i.MXRT600的ISP模式下用J-L ...
- -fno-rtti -fno-exceptions
-fno-rtti 禁用运行时类型信息-fno-exceptions 禁用异常机制一般只有对程序运行效率及资源占用比较看重的场合才会使用, 如果要做这两个的话最好连libstdc++和其他所有的的c+ ...
- 【LeetCode】913. Cat and Mouse 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 参考资料 日期 题目地址:https://leetc ...
- 【LeetCode】236. Lowest Common Ancestor of a Binary Tree 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
- 带你熟悉鸿蒙轻内核Kconfig使用指南
摘要:本文介绍了Kconfig的基础知识,和鸿蒙轻内核的图形化配置及进阶的使用方法. 本文分享自华为云社区<鸿蒙轻内核Kconfig使用笔记>,作者: zhushy. 1. Kconfig ...
- 深度学习中常见的 Normlization 及权重初始化相关知识(原理及公式推导)
Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新 ...
- BAIRE ONE FUNCTIONS (Baire第一类函数)
目录 定义 导函数 一致收敛性质 的连续点 JOHNNY HU, BAIRE ONE FUNCTIONS. 一些基本的定义(诸如逐点收敛, 一致收敛\(F_{\sigma}\)集合等)就不叙述了. 定 ...