Cloudera Manager介绍

    Cloudera Manager(简称CM)是Cloudera公司开发的一款大数据集群安装部署利器,这款利器具有集群自动化安装、中心化管理、集群监控、报警等功能,使得安装集群从几天的时间缩短在几小时以内,运维人员从数十人降低到几人以内,极大的提高集群管理的效率。

CM技术架构

  Agent:安装在每台主机上。该代理负责启动和停止的过程,拆包配置,触发装置和监控主机。
  Management Service:由一组执行各种监控,警报和报告功能角色的服务。
  Database:存储配置和监视信息。通常情况下,多个逻辑数据库在一个或多个数据库服务器上运行。例如,Cloudera的管理服务器和监控角色使用不同的逻辑数据库。
  Cloudera Repository:软件由Cloudera 管理分布存储库。
  Clients:是用于与服务器进行交互的接口:
  Admin Console :基于Web的用户界面与管理员管理集群和Cloudera管理。
  API :与开发人员创建自定义的Cloudera Manager应用程序的API。

CM四大功能

  管理:对集群进行管理,如添加、删除节点等操作。
  监控:监控集群的健康情况,对设置的各种指标和系统运行情况进行全面监控。
  诊断:对集群出现的问题进行诊断,对出现的问题给出建议解决方案。
  集成:对hadoop的多组件进行整合。

需要安装的组件

Cloudera Manager

CDH

JDK

Mysql(主节点)  + JDBC

需要注意的是CDH的版本需要等于或者小于CM的版本

相关的设置

主机名和hosts文件

关闭防火墙

ssh无密码登陆

配置NTP服务

关闭SElinux状态

配置集群

配置数据库

一些安装过程

主节点安装cloudera manager

把我们下载好的cloudera-manager-*.tar.gz包和mysql驱动包mysql-connector-java-*-bin.jar放到主节点cm0的/opt中。

Cloudera Manager建立数据库 

使用命令 cp mysql-connector-java-5.1.40-bin.jar   /opt/cm-5.8.2/share/cmf/lib/ 把mysql-connector-java-5.1.40-bin.jar放到/opt/cm-5.8.2/share/cmf/lib/中。

使用命令 /opt/cm-5.8.2/share/cmf/schema/scm_prepare_database.sh mysql cm  -h cm0  -u  root  -p  123456  --scm-host  cm0  scm scm scm  在主节点初始化CM5的数据库。

实际位置:/usr/share/cmf/schema/scm_prepare_database.sh

Agent配置 

使用命令 vim  /opt/cm-5.8.2/etc/cloudera-scm-agent/config.ini 主节点修改agent配置文件。

在主节点cm0用命令 scp -r   /opt/cm-5.8.2     root@cm1:/opt/ 同步Agent到其他所有节点。

实际位置:/etc/cloudera-scm-agent/config.ini

在所有节点创建cloudera-scm用户

使用命令 useradd --system --home=/opt/cm-5.8.2/run/cloudera-scm-server/  --no-create-home  --shell=/bin/false --comment "Cloudera SCM User" cloudera-scm

启动cm和agent 

主节点cm0通过命令 /opt/cm-5.8.2/etc/init.d/cloudera-scm-server start 启动服务端。

所有节点通过命令 /opt/cm-5.8.2/etc/init.d/cloudera-scm-agent start 启动Agent服务。(所有节点都要启动Agent服务,包括服务端)

Cloudera Manager Server和Agent都启动以后,就可以进行尝试访问了。http://master:7180/cmf/login

实际位置:/etc/rc.d/init.d/cloudera-scm-server 和 /etc/rc.d/init.d/cloudera-scm-agent

补充:/etc/init.d 是 /etc/rc.d/init.d 的软链接(soft link)。/etc/init.d里的shell脚本能够响应start,stop,restart,reload命令来管理某个具体的应用。比如经常看到的命令: /etc/init.d/networking start 这些脚本也可被其他trigger直接激活执行,这些trigger被软连接在/etc/rcN.d/中。这些原理似乎可以用来写daemon程序,让某些程序在开关机时运行。

CDH的安装和集群配置

新建目录为 /opt/cloudera/parcel-repo ,把之前下载的安装文件放到主节点的这个目录下。

安装parcel,安装过程中有什么问题,可以用 /opt/cm-5.8.2/etc/init.d/cloudera-scm-agent status , /opt/cm-5.8.2/etc/init.d/cloudera-scm-server status 查看服务器客户端状态。

也可以通过 /var/log/cloudera-scm-server/cloudera-scm-server.log , /var/log/cloudera-scm-agent/cloudera-scm-agent.log 查看日志。

如果上面的路径找不到则在日志文件夹"/opt/cm-5.8.2/log"查看日志,里面包含server和agent的log,使用命令如下:

tail -f /opt/cm-5.8.2/log/cloudera-scm-server/cloudera-scm-server.log

tail -f /opt/cm-5.8.2/log/cloudera-scm-agent/cloudera-scm-agent.log

实际位置: /var/log/cloudera-scm-server/cloudera-scm-server.log 和 /var/log/cloudera-scm-agent/cloudera-scm-agent.log

遇到的一些问题

问题一:

[root@node1 ~]# spark-shell
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/fs/FSDataInputStream
        at org.apache.spark.deploy.SparkSubmitArguments$$anonfun$mergeDefaultSparkProperties$.apply(SparkSubmitArguments.scala:)
        at org.apache.spark.deploy.SparkSubmitArguments$$anonfun$mergeDefaultSparkProperties$.apply(SparkSubmitArguments.scala:)
        at scala.Option.getOrElse(Option.scala:)
        at org.apache.spark.deploy.SparkSubmitArguments.mergeDefaultSparkProperties(SparkSubmitArguments.scala:)
        at org.apache.spark.deploy.SparkSubmitArguments.<init>(SparkSubmitArguments.scala:)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.fs.FSDataInputStream
        at java.net.URLClassLoader.findClass(URLClassLoader.java:)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:)
        at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:)
        ...  more

查找spark-env.sh文件的位置:

[root@node1 /]# find / -name spark-env.sh
’: No such file or directory
/run/cloudera-scm-agent/process/-spark2_on_yarn-SPARK2_YARN_HISTORY_SERVER/aux/client/spark-env.sh
/run/cloudera-scm-agent/process/-spark2_on_yarn-SPARK2_YARN_HISTORY_SERVER/spark2-conf/spark-env.sh
……
/run/cloudera-scm-agent/process/-spark_on_yarn-SPARK_YARN_HISTORY_SERVER-SparkUploadJarCommand/aux/client/spark-env.sh
/run/cloudera-scm-agent/process/-spark_on_yarn-SPARK_YARN_HISTORY_SERVER-SparkUploadJarCommand/spark-conf/spark-env.sh
/gvfs’: Permission denied
/etc/spark/conf.cloudera.spark_on_yarn/spark-env.sh
/etc/spark2/conf.cloudera.spark2_on_yarn/spark-env.sh
/opt/cloudera/parcels/CDH--.cdh5./etc/spark/conf.dist/spark-env.sh

打开 /etc/spark2/conf.cloudera.spark2_on_yarn/spark-env.sh ,查看到一些内容:

export SPARK_HOME=/opt/cloudera/parcels/SPARK2-.cloudera4-.cdh5./lib/spark2

export HADOOP_HOME=/opt/cloudera/parcels/CDH--.cdh5./lib/hadoop

export SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:$(paste -sd: "$SELF/classpath.txt")"

并在文件的最后追加内容:

export SPARK_DIST_CLASSPATH=$(hadoop classpath)

问题没有解决!

打开 /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/etc/spark/conf.dist/spark-env.sh ,查看到一些内容:

export STANDALONE_SPARK_MASTER_HOST=`hostname`
export SPARK_MASTER_IP=$STANDALONE_SPARK_MASTER_HOST
export SPARK_MASTER_PORT=
export SPARK_WORKER_PORT=
export SPARK_WORKER_DIR=/var/run/spark/work
export SPARK_LOG_DIR=/var/log/spark
export SPARK_PID_DIR='/var/run/spark/'
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:$SPARK_LIBRARY_PATH/spark-assembly.jar"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-hdfs/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-hdfs/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-mapreduce/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-mapreduce/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-yarn/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-yarn/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hive/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/flume-ng/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/parquet/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/avro/*"
在 /etc/spark2/conf.cloudera.spark2_on_yarn/spark-env.sh 文件的末尾追加以下内容:
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/spark/lib/spark-assembly.jar"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-hdfs/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-hdfs/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-mapreduce/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-mapreduce/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-yarn/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-yarn/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hive/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/flume-ng/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/parquet/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/avro/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/jars/*"
export SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/jars/*"

问题依然没有解决!

在 /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/etc/spark/conf.dist/spark-env.sh 文件的末尾追加以下内容:

SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/spark/lib/spark-assembly.jar"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-hdfs/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-hdfs/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-mapreduce/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-mapreduce/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-yarn/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-yarn/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hive/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/flume-ng/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/parquet/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/avro/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/jars/*"
export SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/jars/*"
问题解决!执行命令 spark-shell ,返回信息如下:
[root@node1 ~]# spark-shell
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding -.cdh5./jars/slf4j-log4j12-.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding -.cdh5./jars/avro-tools--cdh5.14.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding -.cdh5./jars/pig--cdh5.14.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding -.cdh5./jars/slf4j-simple-.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version
      /_/

Using Scala version  (Java HotSpot(TM) -Bit Server VM, Java 1.8.0_131)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc (master = local[*], app ).
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
SQL context available as sqlContext.

scala>
执行Spark自带的案例程序:
spark-submit --class org.apache.spark.examples.SparkPi --executor-memory 500m --total-executor-cores  /opt/cloudera/parcels/SPARK2-.cloudera4-.cdh5./lib/spark2/examples/jars/spark-examples_2.-.cloudera4.jar

返回信息如下:

[root@node1 ~]# spark-submit --class org.apache.spark.examples.SparkPi --executor-memory 500m --total-executor-cores  /opt/cloudera/parcels/SPARK2-.cloudera4-.cdh5./lib/spark2/examples/jars/spark-examples_2.-.cloudera4.jar
SLF4J: Class path contains multiple SLF4J bindings.
……
// :: INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@10.200.101.131:38370]
// :: INFO ui.SparkUI: Started SparkUI at http://10.200.101.131:4040
// :: INFO spark.SparkContext: Added JAR .cloudera4-.cdh5./lib/spark2/examples/jars/spark-examples_2.-.cloudera4.jar at spark://10.200.101.131:37025/jars/spark-examples_2.11-2.1.0.cloudera4.jar with timestamp 1556186427964
// :: INFO scheduler.DAGScheduler: Got job  (reduce at SparkPi.scala:) with  output partitions
// :: INFO scheduler.DAGScheduler: Final stage: ResultStage  (reduce at SparkPi.scala:)
// :: INFO executor.Executor: Fetching spark://10.200.101.131:37025/jars/spark-examples_2.11-2.1.0.cloudera4.jar with timestamp 1556186427964
// :: INFO util.Utils: Fetching spark://10.200.101.131:37025/jars/spark-examples_2.11-2.1.0.cloudera4.jar to /tmp/spark-c8bb0344-ce1a-4acc-98d8-dfdebd6b95d6/userFiles-c39c4a70-c9b0-40f7-b48f-cf0f4d46042e/fetchFileTemp8308576688554785370.tmp
// :: INFO executor.Executor: Adding -.cloudera4.jar to class loader
……
Pi is roughly 3.134555672778364
……
// :: INFO ui.SparkUI: Stopped Spark web UI at http://10.200.101.131:4040
// :: INFO spark.MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
// :: INFO storage.MemoryStore: MemoryStore cleared
// :: INFO storage.BlockManager: BlockManager stopped
// :: INFO storage.BlockManagerMaster: BlockManagerMaster stopped
// :: INFO scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
// :: INFO spark.SparkContext: Successfully stopped SparkContext
// :: INFO util.ShutdownHookManager: Shutdown hook called
// :: INFO util.ShutdownHookManager: Deleting directory /tmp/spark-c8bb0344-ce1a-4acc-98d8-dfdebd6b95d6

从上面的信息可以看出,案例程序的运算结果为“Pi is roughly 3.134555672778364”

参考:

https://www.jianshu.com/p/1ed522c1ad1e

https://www.cnblogs.com/felixzh/p/9082344.html

Spark教程——(1)安装Spark的更多相关文章

  1. Ubuntu 14.04 LTS 安装 spark 1.6.0 (伪分布式)-26号开始

    需要下载的软件: 1.hadoop-2.6.4.tar.gz 下载网址:http://hadoop.apache.org/releases.html 2.scala-2.11.7.tgz 下载网址:h ...

  2. Spark学习笔记——安装和WordCount

    1.去清华的镜像站点下载文件spark-2.1.0-bin-without-hadoop.tgz,不要下spark-2.1.0-bin-hadoop2.7.tgz 2.把文件解压到/usr/local ...

  3. CentOS6.5 安装Spark集群

    一.安装依赖软件Scala(所有节点) 1.下载Scala:http://www.scala-lang.org/files/archive/scala-2.10.4.tgz 2.解压: [root@H ...

  4. RedHat6.5安装Spark单机

    版本号: RedHat6.5   RHEL 6.5系统安装配置图解教程(rhel-server-6.5) JDK1.8      http://blog.csdn.net/chongxin1/arti ...

  5. RedHat6.5安装Spark集群

    版本号: RedHat6.5   RHEL 6.5系统安装配置图解教程(rhel-server-6.5) JDK1.8      http://blog.csdn.net/chongxin1/arti ...

  6. [转] Spark快速入门指南 – Spark安装与基础使用

    [From] https://blog.csdn.net/w405722907/article/details/77943331 Spark快速入门指南 – Spark安装与基础使用 2017年09月 ...

  7. spark教程(九)-操作数据库

    数据库也是 spark 数据源创建 df 的一种方式,因为比较重要,所以单独算一节. 本文以 postgres 为例 安装 JDBC 首先需要 安装 postgres 的客户端驱动,即 JDBC 驱动 ...

  8. 学习记录(安装spark)

    根据林子雨老师提供的教程安装spark,用的是网盘里下载的课程软件 将文件通过ftp传到ubantu中 根据教程修改配置文件,并成功安装spark 在修改配置文件的时候出现了疏忽,导致找不到该文件,最 ...

  9. 2.安装Spark与Python练习

    一.安装Spark <Spark2.4.0入门:Spark的安装和使用> 博客地址:http://dblab.xmu.edu.cn/blog/1307-2/ 1.1 基础环境 1.1.1 ...

  10. 安装spark ha集群

    安装spark ha集群 1.默认安装好hadoop+zookeeper 2.安装scala 1.解压安装包 tar zxvf scala-2.11.7.tgz 2.配置环境变量 vim /etc/p ...

随机推荐

  1. 2.0.FastDFS单机模式综合版

    Centos610系列配置 1.什么是FastDFS? FastDFS是一个开源的分布式文件系统,她对文件进行管理,功能包括:文件存储.文件同步.文件访问(文件上传.文件下载)等,解决了大容量存储和负 ...

  2. Spring 事务管理的API

    Spring事务管理有3个API,均为接口. (1)PlatformTransactionManager    平台事务管理器 常用的实现类: DataSourceTransactionManager ...

  3. GO TIME

    #go语言的time包 ##组成 time.Duration(时长,耗时) time.Time(时间点) time.C(放时间点的管道)[ Time.C:=make(chan time.Time) ] ...

  4. 运营商如何关闭2G、3G网络?这事儿得从小灵通说起

    5G时代即将全面开启,主流声音是对未来的无限畅想--5G将带来翻天覆地的变化.不过凡事都有利弊两面性,5G作为新生事物固然大有可为,但不可避免地会对旧事物造成巨大冲击.除了会影响很多跟不上潮流发展的行 ...

  5. MySQL 远程连接问题 (Linux Server)

    Mysql Workbench 连接Ubuntu上的Mysql时报如下错误: 原因:查看  /etc/mysql/mysql.conf.d/mysqld.cnf # # Instead of skip ...

  6. WCF 数据传输SIZE过大

    1.当客户端调用WCF服务时,接受数据过大,可通过以下配置解决 <basicHttpBinding> <binding name="BasicHttpBinding_Wcf ...

  7. 浅谈CVE-2018-12613文件包含/buuojHCTF2018签到题Writeup

    文件包含 蒻姬我最开始接触这个 是一道buuoj的web签到题 进入靶机,查看源代码 <!DOCTYPE html> <html lang="en"> &l ...

  8. Django 学习之Rest Framework 视图相关

    drf除了在数据序列化部分简写代码以外,还在视图中提供了简写操作.所以在django原有的django.views.View类基础上,drf封装了多个子类出来提供给我们使用. Django REST ...

  9. 使用Servlet处理AJAX请求

    AJAX用于异步更新页面的局部内容. ajax常用的请求数据类型 text    纯文本字符串 json    json数据 使用ajax获取text示例 此种方式常用于前端向后台查询实体的一个属性( ...

  10. 在iOS项目中,这样才能完美的修改项目名称

    https://www.cnblogs.com/liangyi-cn/p/8657474.html 前言: 在iOS开发中,有时候想改一下项目的名字,这会遇到很多麻烦. 直接改项目名的话,Xcode不 ...