求 $\int_\vGa y^2\rd s$, 其中 $\vGa$ 由 $\dps{\sedd{\ba{rl} x^2+y^2+z^2&=a^2\\ x+z&=a \ea}}$ 决定.

解答: $\vGa$: $$\bex \sedd{\ba{rl} \sex{x-\cfrac{a}{2}}^2+y^2+\sex{z-\cfrac{a}{2}}^2&=\cfrac{a^2}{2}\\ \sex{x-\cfrac{a}{2}}+\sex{y-\cfrac{a}{2}}&=0 \ea}. \eex$$ 作变换 $$\bex u=x-\cfrac{a}{2},\quad v=y,\quad w=z-\cfrac{a}{2}, \eex$$ 则 $$\beex \bea \int_\vGa y^2\rd s &=\int_l v^2\rd s\quad\sex{l:\ \sedd{\ba{rl} u^2+v^2+w^2&=\cfrac{a^2}{2}\\ u+w=0 \ea}}\\ &=\int_0^{2\pi} \cfrac{a^2}{2}\sin^2\tt \sqrt{\sex{\cfrac{\rd u}{\rd \tt}}^2 +\sex{\cfrac{\rd v}{\rd t}}^2 +\sex{\cfrac{\rd w}{\rd t}}^2}\rd \tt\\ &\quad\sex{l:\ \sedd{\ba{rl} u=\cfrac{a}{2}\cos\tt\\ v=\cfrac{a}{\sqrt{2}}\sin\tt\\ w=-\cfrac{a}{2}\cos\tt \ea}, 0\leq \tt\leq 2\pi}\\ &=\int_0^{2\pi} \cfrac{a^2}{2}\sin^2\tt \cdot \cfrac{a}{\sqrt{2}}\rd \tt\\ &=\cfrac{a^3\pi}{2\sqrt{2}}. \eea \eeex$$

[再寄小读者之数学篇](2014-04-01 from 2103471050@qq.com 曲线积分)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  10. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. MPLAB X IDE调试仿真功能简单入门

    仿真分为硬件仿真和软件仿真,这里的硬件仿真和软件仿真的区别,就不多说了,相信大家都听说过这两个概念. 我这里想给大家介绍的是“Set PC at Cursor”--“设置PC到光标处”这个功能,这个功 ...

  2. org.apache.ibatis.builder.IncompleteElementException: Could not find result map com.hp.entity.Emp

    错误提示代码: org.apache.ibatis.builder.IncompleteElementException: Could not find result map com.hp.entit ...

  3. springmvc中的类型转换器

    在使用springmvc时可能使用@RequestParam注解或者@RequestBody注解,他们的作用是把请求体中的参数取出来,给方法的参数绑定值. 假如方法的参数是自定义类型,就要用到类型转换 ...

  4. centos docker 安装

    centos docker 安装 参考网站 https://docs.docker.com/install/linux/docker-ce/centos/ 1.删除原有docker $ sudo yu ...

  5. windows做代理服务器让内部linux上网

    fiddler代理上网 1 下载安装:http://www.telerik.com/fiddl er 2 设置代理,如下图 3 代理服务器信息 代理服务器的IP : 10.1.44.11 代理服务器的 ...

  6. C#模板设计模式使用和学习心得

    模板设计模式: 模版方法模式由一个抽象类和一个(或一组)实现类通过继承结构组成,抽象类中的方法分为三种: 抽象方法:父类中只声明但不加以实现,而是定义好规范,然后由它的子类去实现. 模版方法:由抽象类 ...

  7. js对时间的一些操作

    new Date()  //Thu Dec 27 2018 12:16:16 GMT+0800 (中国标准时间); new Date('2018-1-1,12:20:20'/1258454512000 ...

  8. codeforces#1132 F. Clear the String(神奇的区间dp)

    题意:给出一个字符串S,|S|<=500.每次操作可以删除一段连续的相同字母的子串.问,最少操作多少次可以把这个字符串变成空串. 分析:刚开始的思路是,把连续的串给删除掉,然后再....贪心.完 ...

  9. MySQL单向加密函数

    select encode('pual','zhangxueliang'); select md5('zhangxueliang'); 加密为null,不显示字段值: select ENCRYPT(& ...

  10. Python的数据库操作

    使用原生SQL语句进行对数据库操作,可完成数据库表的建立和删除,及数据表内容的增删改查操作等.其可操作性很强,如可以直接使用“show databases”.“show tables”等语句进行表格之 ...