[再寄小读者之数学篇](2014-04-01 from 2103471050@qq.com 曲线积分)
求 $\int_\vGa y^2\rd s$, 其中 $\vGa$ 由 $\dps{\sedd{\ba{rl} x^2+y^2+z^2&=a^2\\ x+z&=a \ea}}$ 决定.
解答: $\vGa$: $$\bex \sedd{\ba{rl} \sex{x-\cfrac{a}{2}}^2+y^2+\sex{z-\cfrac{a}{2}}^2&=\cfrac{a^2}{2}\\ \sex{x-\cfrac{a}{2}}+\sex{y-\cfrac{a}{2}}&=0 \ea}. \eex$$ 作变换 $$\bex u=x-\cfrac{a}{2},\quad v=y,\quad w=z-\cfrac{a}{2}, \eex$$ 则 $$\beex \bea \int_\vGa y^2\rd s &=\int_l v^2\rd s\quad\sex{l:\ \sedd{\ba{rl} u^2+v^2+w^2&=\cfrac{a^2}{2}\\ u+w=0 \ea}}\\ &=\int_0^{2\pi} \cfrac{a^2}{2}\sin^2\tt \sqrt{\sex{\cfrac{\rd u}{\rd \tt}}^2 +\sex{\cfrac{\rd v}{\rd t}}^2 +\sex{\cfrac{\rd w}{\rd t}}^2}\rd \tt\\ &\quad\sex{l:\ \sedd{\ba{rl} u=\cfrac{a}{2}\cos\tt\\ v=\cfrac{a}{\sqrt{2}}\sin\tt\\ w=-\cfrac{a}{2}\cos\tt \ea}, 0\leq \tt\leq 2\pi}\\ &=\int_0^{2\pi} \cfrac{a^2}{2}\sin^2\tt \cdot \cfrac{a}{\sqrt{2}}\rd \tt\\ &=\cfrac{a^3\pi}{2\sqrt{2}}. \eea \eeex$$
[再寄小读者之数学篇](2014-04-01 from 2103471050@qq.com 曲线积分)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- jquery-插件iCheck 使用
这是一个兼容多种浏览器的插件 官网:http://icheck.fronteed.com/ 官方给出了很多的例子,我说一个使用的问题. 使用的时候,要放到window..load的外部. 页面html ...
- 应用 memcached 提升站点性能
减少读自数据库和数据源 开源 memcached 工具是一个用来存储常用信息的缓存,有了它,您便无需从缓慢的资源,比如磁盘或数据库,加载(并处理)信息了.该工具可部署在专用的情况下,也可作为用完现有环 ...
- python之函数对象、函数嵌套、名称空间与作用域、装饰器
一 函数对象 一 函数是第一类对象,即函数可以当作数据传递 #1 可以被引用 #2 可以当作参数传递 #3 返回值可以是函数 #3 可以当作容器类型的元素 二 利用该特性,优雅的取代多分支的if de ...
- 【转】Android 增,删,改,查 通讯录中的联系人
一.权限 操作通讯录必须在AndroidManifest.xml中先添加2个权限, <uses-permission android:name="android.permission. ...
- Raft与MongoDB复制集协议比较
在一文搞懂raft算法一文中,从raft论文出发,详细介绍了raft的工作流程以及对特殊情况的处理.但算法.协议这种偏抽象的东西,仅仅看论文还是比较难以掌握的,需要看看在工业界的具体实现.本文关注Mo ...
- 自学提高:JVM点滴
写在前面 这年头就是得不断地学习. 学什么东西就看需要了. 不学习很难进步. 同时别人也会超过你. 东西都是网上有的.图片也好,文字也好.基本都可以在网上找到. JAVA运行原理 JVM包括字节码解释 ...
- Java里的不能与无用.
不能获取参数名 , 导致函数的参数名无用. 在MyBatis的方法里. 参数名是无法反射得到的. 导致必须使用注解,指定参数名. 这样的话. 参数名就没有了意义.
- PS制作水火相溶特效文字图片
最终效果 一.新建一个1400*900像素的画布. 二.由上到下拉一个深灰到纯黑径向渐变. 三.输入字母S,并用ctrl+t拉到适合的大小,并且降低不透明度. 四.拖入水花素材(如果大家有水花笔刷的话 ...
- 控制结构(9): 管道(pipeline)
// 上一篇:线性化(linearization) // 下一篇:指令序列(opcode) 最近阅读了酷壳上的一篇深度好文:LINUX PID 1 和 SYSTEMD.这篇文章介绍了systemd干掉 ...
- Oracle物化视图的创建及使用
oracle物化视图 一.oracle物化视图基本概念 物化视图首先需要创建物化视图日志, oracle依据用户创建的物化视图日志来创建物化视图日志表, 物化视图日志表的名称为mlog$_后面跟 ...