求 $\int_\vGa y^2\rd s$, 其中 $\vGa$ 由 $\dps{\sedd{\ba{rl} x^2+y^2+z^2&=a^2\\ x+z&=a \ea}}$ 决定.

解答: $\vGa$: $$\bex \sedd{\ba{rl} \sex{x-\cfrac{a}{2}}^2+y^2+\sex{z-\cfrac{a}{2}}^2&=\cfrac{a^2}{2}\\ \sex{x-\cfrac{a}{2}}+\sex{y-\cfrac{a}{2}}&=0 \ea}. \eex$$ 作变换 $$\bex u=x-\cfrac{a}{2},\quad v=y,\quad w=z-\cfrac{a}{2}, \eex$$ 则 $$\beex \bea \int_\vGa y^2\rd s &=\int_l v^2\rd s\quad\sex{l:\ \sedd{\ba{rl} u^2+v^2+w^2&=\cfrac{a^2}{2}\\ u+w=0 \ea}}\\ &=\int_0^{2\pi} \cfrac{a^2}{2}\sin^2\tt \sqrt{\sex{\cfrac{\rd u}{\rd \tt}}^2 +\sex{\cfrac{\rd v}{\rd t}}^2 +\sex{\cfrac{\rd w}{\rd t}}^2}\rd \tt\\ &\quad\sex{l:\ \sedd{\ba{rl} u=\cfrac{a}{2}\cos\tt\\ v=\cfrac{a}{\sqrt{2}}\sin\tt\\ w=-\cfrac{a}{2}\cos\tt \ea}, 0\leq \tt\leq 2\pi}\\ &=\int_0^{2\pi} \cfrac{a^2}{2}\sin^2\tt \cdot \cfrac{a}{\sqrt{2}}\rd \tt\\ &=\cfrac{a^3\pi}{2\sqrt{2}}. \eea \eeex$$

[再寄小读者之数学篇](2014-04-01 from 2103471050@qq.com 曲线积分)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  10. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. 验证二叉搜索树的golang实现

    给定一个二叉树,判断其是否是一个有效的二叉搜索树. 一个二叉搜索树具有如下特征: 节点的左子树只包含小于当前节点的数. 节点的右子树只包含大于当前节点的数. 所有左子树和右子树自身必须也是二叉搜索树. ...

  2. Redis学习笔记(4)——Redis五大数据结构介绍以及应用场景

    出处:https://www.jianshu.com/p/f09480c05e42 Redis是典型的Key-Value类型数据库,Key为字符类型,Value的类型常用的为五种类型:String.H ...

  3. Configuring High Availability and Consistency for Apache Kafka

    To achieve high availability and consistency targets, adjust the following parameters to meet your r ...

  4. Building Lambda Architecture with Spark Streaming

    The versatility of Apache Spark’s API for both batch/ETL and streaming workloads brings the promise ...

  5. STM32F40G-EVAL_UC/OS III

    micrum官网下载uc/os程序包: 包含文件cotex_M4.h:

  6. 在C#/.NET应用程序开发中创建一个基于Topshelf的应用程序守护进程(服务)

    本文首发于:码友网--一个专注.NET/.NET Core开发的编程爱好者社区. 文章目录 C#/.NET基于Topshelf创建Windows服务的系列文章目录: C#/.NET基于Topshelf ...

  7. 《通过C#学Proto.Actor模型》之Supervision

    Supervision,字面意思是监督,是父Actor发现子Actor有异常发生后,对子Actor产用保种策略处理的机制,如果父Actor不处理,则往上传递. 子Actor发生异常后处理的策略有: R ...

  8. odoo学习

    odoo视图对应模型:model="ir.ui.view"> <record id="mrp_workcenter_view_light_inherit&qu ...

  9. 【Api】easy-mock在线api

    解决 在使用easy-mock模拟post提交数据的情况中,我们有时需要对提交的数据进行简单逻辑处理.查阅文档发现可以使用"_req.body.keyname"来获取相应的值,但是 ...

  10. 前后端不分离的springboot项目问题:页面框架问题

    前言:最近自己想搞一个以springboot开发的web项目,由于页面布局问题,在前期开发的时候没有太注意,每天写一点现在开发到一半出现了一个大问题. 1.先说说整个网站框架搭建问题:(整个项目前后端 ...