Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

给你一个图 判断其最小生成树是不是唯一的

记录第一个最小生成树的路径,枚举每一条边删除的情况,如果还能再生成一个长度为n-1并且值相等的最小生成树,那么就不是唯一的了

在POJ discuss 找到的一组好样例

9
1 0
4 5
1 2 1
2 3 1
3 4 1
1 4 2
2 4 1
10 15
2 10 97
2 6 18
7 1 63
5 4 62
7 5 93
1 3 10
6 9 99
3 7 73
2 7 6
5 9 22
5 3 82
4 2 36
8 1 50
10 3 20
7 9 69
10 15
10 5 79
4 2 33
4 8 41
9 3 97
5 2 25
2 6 9
2 10 66
8 3 38
10 8 89
1 10 83
1 7 91
7 3 94
7 10 40
7 2 70
2 3 82
10 15
3 8 84
7 10 34
1 10 14
1 9 60
7 6 49
8 5 39
4 5 96
4 7 78
7 3 33
2 8 56
8 9 71
5 2 83
3 6 61
7 9 63
2 6 43
10 15
1 10 25
1 3 14
10 5 72
8 3 18
2 5 41
4 9 86
6 8 17
6 2 98
5 6 34
1 8 90
7 1 65
7 2 63
8 7 71
4 2 64
9 6 50
10 15
2 7 13
5 10 52
5 2 5
10 6 47
9 4 23
8 10 54
1 10 20
4 10 8
6 1 87
8 2 43
8 1 87
6 3 53
3 1 87
2 3 82
4 6 91
10 15
1 2 14
4 1 89
7 6 8
9 4 81
5 2 81
10 9 6
1 5 44
1 3 33
2 6 25
6 10 10
1 10 65
6 9 74
8 10 41
2 3 89
5 10 2
10 15
9 8 14
2 10 66
10 5 73
2 3 98
1 3 30
6 5 3
2 1 84
2 6 33
10 8 24
5 8 34
7 1 69
3 7 60
7 4 38
4 10 65
3 4 32 答案是
0
Not Unique!
287
432
406
326
264
220
273
#include<iostream>
#include<cstdio> //EOF,NULL
#include<cstring> //memset
#include<cstdlib> //rand,srand,system,itoa(int),atoi(char[]),atof(),malloc
#include<cmath> //ceil,floor,exp,log(e),log10(10),hypot(sqrt(x^2+y^2)),cbrt(sqrt(x^2+y^2+z^2))
#include<algorithm> //fill,reverse,next_permutation,__gcd,
#include<string>
#include<vector>
#include<queue>
#include<stack>
#include<utility>
#include<iterator>
#include<iomanip> //setw(set_min_width),setfill(char),setprecision(n),fixed,
#include<functional>
#include<map>
#include<set>
#include<limits.h> //INT_MAX
#include<bitset> // bitset<?> n
using namespace std; #define rep(i,a,n) for(int i=a;i<n;i++)
#define per(i,a,n) for(int i=n-1;i>=a;i--)
#define fori(x) for(int i=0;i<x;i++)
#define forj(x) for(int j=0;j<x;j++)
#define memset(x,y) memset(x,y,sizeof(x))
#define memcpy(x,y) memcpy(x,y,sizeof(y))
#define all(x) x.begin(),x.end()
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef pair<int,int> P;
typedef long long LL;
typedef long long ll;
const double eps=1e-;
const double PI = acos(1.0);
const int INF = 0x3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+;
const int MAXN = 1e6+;
const int maxm = ;
const int maxn = +;
int T;
int n,m;
int cnt,ans,tot,sum,pos;
int pre[maxn];
int path[maxn];
int flag; struct node{
int st,ed,w;
bool operator < (node b) const{
return w < b.w;
}
}rod[maxn]; int find(int x){ return x == pre[x] ? x : pre[x] = find(pre[x]);}
bool join(int x,int y){
if(find(x)!=find(y)){
pre[find(y)] = find(x);
return true;
}
return false;
}
void kruskal(){
for(int i = ; i <= n; i++){
pre[i] = i;
}
for(int i = ;i < m ; i++){
int mp1 = find(rod[i].st);
int mp2 = find(rod[i].ed);
if(join(mp1,mp2)) {
ans += rod[i].w;
path[tot++] = i;
}
}
for(int k = ; k < m ;k++){
for(int i = ; i <= n; i++){
pre[i] = i;
}
sum = pos = ;
for(int i = ; i < m ;i++){
if(i == path[k]) continue;
int mp1 = find(rod[i].st);
int mp2 = find(rod[i].ed);
if(join(mp1,mp2)) {
sum += rod[i].w;
pos++;
}
}
if(pos == n- && sum == ans){
flag = ; break;
}
}
}
int main(){
read(T);
while(T--){
flag = cnt = ans = tot = ;
read2(n,m);
if(n==) {
printf("0\n");
continue;
}
int a,b,c;
for(int i = ; i < m ;i++){
read3(a,b,c);
rod[i].st = a;
rod[i].ed = b;
rod[i].w = c;
}
sort(rod,rod+m);
kruskal();
if(flag)
printf("Not Unique!\n");
else
print(ans);
}
}

POJ 1679 The Unique MST 【判断最小生成树是否唯一】的更多相关文章

  1. poj 1679 The Unique MST 判断最小生成树是否唯一(图论)

    借用的是Kruskal的并查集,算法中的一点添加和改动. 通过判定其中有多少条可选的边,然后跟最小生成树所需边做比较,可选的边多于所选边,那么肯定方案不唯一. 如果不知道这个最小生成树的算法,还是先去 ...

  2. poj 1679 The Unique MST (判定最小生成树是否唯一)

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  3. POJ 1679 The Unique MST 推断最小生成树是否唯一

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22715   Accepted: 8055 D ...

  4. 【POJ 1679 The Unique MST】最小生成树

    无向连通图(无重边),判断最小生成树是否唯一,若唯一求边权和. 分析生成树的生成过程,只有一个圈内出现权值相同的边才会出现权值和相等但“异构”的生成树.(并不一定是最小生成树) 分析贪心策略求最小生成 ...

  5. POJ 1679 The Unique MST(最小生成树)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  6. POJ 1679 The Unique MST (最小生成树)

    The Unique MST 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/J Description Given a conn ...

  7. POJ 1679 The Unique MST 【最小生成树/次小生成树模板】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22668   Accepted: 8038 D ...

  8. (poj)1679 The Unique MST 求最小生成树是否唯一 (求次小生成树与最小生成树是否一样)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  9. poj 1679 The Unique MST 【次小生成树】【模板】

    题目:poj 1679 The Unique MST 题意:给你一颗树,让你求最小生成树和次小生成树值是否相等. 分析:这个题目关键在于求解次小生成树. 方法是,依次枚举不在最小生成树上的边,然后加入 ...

  10. POJ 1679 The Unique MST(判断最小生成树是否唯一)

    题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...

随机推荐

  1. SQL Server物化视图学习笔记

    一. 基本知识   摘抄自http://www.cnblogs.com/kissdodog/p/3385161.html SQL Server索引 - 索引(物化)视图 <第九篇> 索引视 ...

  2. leetCode-linkedListCycle判断链表是否有环

    题目 Given a linked list, determine if it has a cycle in it. Follow up: Can you solve it without using ...

  3. Python杨辉三角

    杨辉三角,是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的<详解九章算法>一书中出现.在欧洲,帕斯卡(1623----1662)在1654年发现这一规律,所以这个 ...

  4. STL之stack容器

    1.stack容器 1) stack是堆栈容器,是一种“先进后出”的容器. 2)stack是简单地装饰deque容器而成为另外的一种容器. 3)头文件.#include <stack> 2 ...

  5. HTML标签-----article、aside、figure、nav和section

       article    <article> 标签定义独立的内容 <!DOCTYPE html> <html> <head> <meta cha ...

  6. 从零开始学习cocoStudio(1)--cocoStudio是什么?

    一.cocoStudio是什么? CocoStudio是一套专业的永久免费的游戏开发工具集,帮助开发者快速创建游戏资源,将大部分繁琐的游戏开发工作使用编辑器来快速制作,CocoStudio包含了游戏开 ...

  7. 【2017-03-02】C#集合,结构体,枚举

    集合 集合与数组的区别 数组:同一类型,固定长度 集合:不同类型,不固定长度 使用集合前需要:     引用命名空间:using System.Collections; 1.普通集合 定义: Arra ...

  8. 高性能NIO框架Netty-对象传输

    http://cxytiandi.com/blog/detail/17403 上篇文章高性能NIO框架Netty入门篇我们对Netty做了一个简单的介绍,并且写了一个入门的Demo,客户端往服务端发送 ...

  9. 如何干净卸载mysql

    一.在控制面板中卸载mysql软件: 二.卸载过后删除C:\Program Files (x86)\MySQL该目录下剩余了所有文件,把mysql文件夹也删了: 三.windows+R运行“reged ...

  10. Codeforce 835B - The number on the board (贪心)

    Some natural number was written on the board. Its sum of digits was not less than k. But you were di ...