Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

给你一个图 判断其最小生成树是不是唯一的

记录第一个最小生成树的路径,枚举每一条边删除的情况,如果还能再生成一个长度为n-1并且值相等的最小生成树,那么就不是唯一的了

在POJ discuss 找到的一组好样例

9
1 0
4 5
1 2 1
2 3 1
3 4 1
1 4 2
2 4 1
10 15
2 10 97
2 6 18
7 1 63
5 4 62
7 5 93
1 3 10
6 9 99
3 7 73
2 7 6
5 9 22
5 3 82
4 2 36
8 1 50
10 3 20
7 9 69
10 15
10 5 79
4 2 33
4 8 41
9 3 97
5 2 25
2 6 9
2 10 66
8 3 38
10 8 89
1 10 83
1 7 91
7 3 94
7 10 40
7 2 70
2 3 82
10 15
3 8 84
7 10 34
1 10 14
1 9 60
7 6 49
8 5 39
4 5 96
4 7 78
7 3 33
2 8 56
8 9 71
5 2 83
3 6 61
7 9 63
2 6 43
10 15
1 10 25
1 3 14
10 5 72
8 3 18
2 5 41
4 9 86
6 8 17
6 2 98
5 6 34
1 8 90
7 1 65
7 2 63
8 7 71
4 2 64
9 6 50
10 15
2 7 13
5 10 52
5 2 5
10 6 47
9 4 23
8 10 54
1 10 20
4 10 8
6 1 87
8 2 43
8 1 87
6 3 53
3 1 87
2 3 82
4 6 91
10 15
1 2 14
4 1 89
7 6 8
9 4 81
5 2 81
10 9 6
1 5 44
1 3 33
2 6 25
6 10 10
1 10 65
6 9 74
8 10 41
2 3 89
5 10 2
10 15
9 8 14
2 10 66
10 5 73
2 3 98
1 3 30
6 5 3
2 1 84
2 6 33
10 8 24
5 8 34
7 1 69
3 7 60
7 4 38
4 10 65
3 4 32 答案是
0
Not Unique!
287
432
406
326
264
220
273
#include<iostream>
#include<cstdio> //EOF,NULL
#include<cstring> //memset
#include<cstdlib> //rand,srand,system,itoa(int),atoi(char[]),atof(),malloc
#include<cmath> //ceil,floor,exp,log(e),log10(10),hypot(sqrt(x^2+y^2)),cbrt(sqrt(x^2+y^2+z^2))
#include<algorithm> //fill,reverse,next_permutation,__gcd,
#include<string>
#include<vector>
#include<queue>
#include<stack>
#include<utility>
#include<iterator>
#include<iomanip> //setw(set_min_width),setfill(char),setprecision(n),fixed,
#include<functional>
#include<map>
#include<set>
#include<limits.h> //INT_MAX
#include<bitset> // bitset<?> n
using namespace std; #define rep(i,a,n) for(int i=a;i<n;i++)
#define per(i,a,n) for(int i=n-1;i>=a;i--)
#define fori(x) for(int i=0;i<x;i++)
#define forj(x) for(int j=0;j<x;j++)
#define memset(x,y) memset(x,y,sizeof(x))
#define memcpy(x,y) memcpy(x,y,sizeof(y))
#define all(x) x.begin(),x.end()
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef pair<int,int> P;
typedef long long LL;
typedef long long ll;
const double eps=1e-;
const double PI = acos(1.0);
const int INF = 0x3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+;
const int MAXN = 1e6+;
const int maxm = ;
const int maxn = +;
int T;
int n,m;
int cnt,ans,tot,sum,pos;
int pre[maxn];
int path[maxn];
int flag; struct node{
int st,ed,w;
bool operator < (node b) const{
return w < b.w;
}
}rod[maxn]; int find(int x){ return x == pre[x] ? x : pre[x] = find(pre[x]);}
bool join(int x,int y){
if(find(x)!=find(y)){
pre[find(y)] = find(x);
return true;
}
return false;
}
void kruskal(){
for(int i = ; i <= n; i++){
pre[i] = i;
}
for(int i = ;i < m ; i++){
int mp1 = find(rod[i].st);
int mp2 = find(rod[i].ed);
if(join(mp1,mp2)) {
ans += rod[i].w;
path[tot++] = i;
}
}
for(int k = ; k < m ;k++){
for(int i = ; i <= n; i++){
pre[i] = i;
}
sum = pos = ;
for(int i = ; i < m ;i++){
if(i == path[k]) continue;
int mp1 = find(rod[i].st);
int mp2 = find(rod[i].ed);
if(join(mp1,mp2)) {
sum += rod[i].w;
pos++;
}
}
if(pos == n- && sum == ans){
flag = ; break;
}
}
}
int main(){
read(T);
while(T--){
flag = cnt = ans = tot = ;
read2(n,m);
if(n==) {
printf("0\n");
continue;
}
int a,b,c;
for(int i = ; i < m ;i++){
read3(a,b,c);
rod[i].st = a;
rod[i].ed = b;
rod[i].w = c;
}
sort(rod,rod+m);
kruskal();
if(flag)
printf("Not Unique!\n");
else
print(ans);
}
}

POJ 1679 The Unique MST 【判断最小生成树是否唯一】的更多相关文章

  1. poj 1679 The Unique MST 判断最小生成树是否唯一(图论)

    借用的是Kruskal的并查集,算法中的一点添加和改动. 通过判定其中有多少条可选的边,然后跟最小生成树所需边做比较,可选的边多于所选边,那么肯定方案不唯一. 如果不知道这个最小生成树的算法,还是先去 ...

  2. poj 1679 The Unique MST (判定最小生成树是否唯一)

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  3. POJ 1679 The Unique MST 推断最小生成树是否唯一

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22715   Accepted: 8055 D ...

  4. 【POJ 1679 The Unique MST】最小生成树

    无向连通图(无重边),判断最小生成树是否唯一,若唯一求边权和. 分析生成树的生成过程,只有一个圈内出现权值相同的边才会出现权值和相等但“异构”的生成树.(并不一定是最小生成树) 分析贪心策略求最小生成 ...

  5. POJ 1679 The Unique MST(最小生成树)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  6. POJ 1679 The Unique MST (最小生成树)

    The Unique MST 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/J Description Given a conn ...

  7. POJ 1679 The Unique MST 【最小生成树/次小生成树模板】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22668   Accepted: 8038 D ...

  8. (poj)1679 The Unique MST 求最小生成树是否唯一 (求次小生成树与最小生成树是否一样)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  9. poj 1679 The Unique MST 【次小生成树】【模板】

    题目:poj 1679 The Unique MST 题意:给你一颗树,让你求最小生成树和次小生成树值是否相等. 分析:这个题目关键在于求解次小生成树. 方法是,依次枚举不在最小生成树上的边,然后加入 ...

  10. POJ 1679 The Unique MST(判断最小生成树是否唯一)

    题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...

随机推荐

  1. jQuery-设计模式

    [目录] 一.选择网页元素 二.改变结果集 三.链式操作 四.元素的操作:取值和赋值 五.元素的操作:移动 六.元素的操作:复制.删除和创建 七.工具方法 八.事件操作 九.特殊效果 [正文] 一.选 ...

  2. hbase-java-api002(flush)

    package api; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apa ...

  3. 未能正确加载“EditorPackage”包(转)

    打开vs2012加载项目的时候报如下的错误: 未能正确加载“Microsoft.VisualStudio.Editor.Implementation.EditorPackage”包.此问题可能是由配置 ...

  4. C# Activator和new的区别

    1.你需要动态的创建一个实例模型的时候,就用Activator.CreateInstance(Type type);如果是明确的知道要创建哪个实例的模型,就可以用 new Class1()了. T t ...

  5. linux 安装 Python

    一. 打开终端,输入:wget https://www.python.org/ftp/python/3.5.0/Python-3.5.0b4.tgz 下载完毕后 输入解压命令:tar –zxvf Py ...

  6. 【Hive学习之一】Hive简介

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...

  7. vue-cli 脚手架搭建

    1,下载node.js node.js 集成npm 管理器 2,打开命令行工具(win+R) node -v npm -v 出现对应版本号,则安装完成 3,配置代理信息 详见代理设定:https:// ...

  8. django models数据库操作

    一.数据库操作 1.创建model表         基本结构 1 2 3 4 5 6 from django.db import models     class userinfo(models.M ...

  9. nginx FastCGI错误Primary script unknown解决办法

    在centos上成功编译安装nginx 1.4.php 5.4并成功启动nginx和php-fpm后,访问php提示"File not found.",同时在错误日志中看到: 复制 ...

  10. What Would you Find out about MS908CV ?

    The Autel MaxiSYS commercial car diagnostics scan device, No. MS908CV, performs increased technique ...