LCS stands for longest common subsequence, and it is a well known problem. A sequence in this
problem means a list of integers, and a sequence X is considered a subsequence of another sequence Y ,
when the sequence X can be obtained by deleting zero or more elements from the sequence Y without
changing the order of the remaining elements.
In this problem you are given two sequences and your task is to nd the length of the longest
sequence which is a subsequence of both the given sequences.
You are not given the sequences themselves. For each sequence you are given three integers N, F
and D, where N is the length of the sequence, F is the rst element in the sequence. Each element
except the rst element is greater than the element before it by D.
For example N = 5, F = 3 and D = 4 represents the following sequence: [3, 7, 11, 15, 19].
There will be at least one integer which belongs to both sequences and it is not greater than
1,000,000.
Input
Your program will be tested on one or more test cases. The rst line of the input will be a single integer
T, the number of test cases (1 T 100). Followed by the test cases, each test case is described in one
line which contains 6 integers separated by a single space N1 F1 D1 N2 F2 D2 (1 N1;N2 1018)
and (1 F1;D1; F2;D2 109) representing the length of the rst sequence, the rst element in the
rst sequence, the incremental value of the rst sequence, the length of the second sequence, the rst
element in the second sequence and the incremental value of the second sequence, respectively.
Output
For each test case, print a single line which contains a single integer representing the length of the
longest common subsequence between the given two sequences.
Sample Input
3
5 3 4 15 3 1
10 2 2 7 3 3
100 1 1 100 1 2
Sample Output
4
3

这条题是组队排位的中下题。小邪卡了很久。

解法其实就是用扩展欧几里得算法求出第一个出现的相等的位置。

f1  + (x-1)*d1 = f2 + (y1 -1 )*d2;

除去前面的位置,接下来就是算两个等差序列有多少段出现LCS,然后取较小那个就可以了

#include<bits/stdc++.h>
using namespace std;
typedef long long LL; void e_gcd(LL a,LL b,LL &x,LL &y,LL &d)
{
if( !b ){ d = a,x = ,y = ; return ;}
e_gcd(b,a%b,y,x,d);
y -= x * (a / b);
}
int main()
{
int _;
LL k1,k2,c;
LL x,y,L1,L2,R1,R2,ML,MR,d;
LL f1,f2,d1,d2,n1,n2;
scanf("%d",&_);
while(_--){
LL ans=;
scanf("%lld%lld%lld%lld%lld%lld",&n1,&f1,&d1,&n2,&f2,&d2);
c = f1 -f2;
d = __gcd(d1,d2);
if( c % d ){puts("");continue;} e_gcd(d1,d2,x,y,d);
k1 = -x * (c/d);
k2 = y * (c/d);
d1 /= d , d2 /= d;
L1 = ceil( (-k1*1.0)/d2 );
L2 = ceil( (-k2*1.0)/d1 );
R1 = floor( (n1-k1) * 1.0 / d2);
R2 = floor( (n2-k2) * 1.0 / d1);
if( (n1 - k1) %d2 == )R1 --;
if( (n2 - k2) %d1 == )R2 --; ML = max(L1,L2);
MR = min(R1,R2);
ans = max(0LL,MR - ML + );
printf("%lld\n",ans);
}
return ;
}

UVAlive 6763 Modified LCS的更多相关文章

  1. Modified LCS

    Input Output Sample Input 3 5 3 4 15 3 1 10 2 2 7 3 3 100 1 1 100 1 2 Sample Output 4 3 50超时代码,因为K很大 ...

  2. CSU 1446 Modified LCS 扩展欧几里得

    要死了,这个题竟然做了两天……各种奇葩的错误…… HNU的12831也是这个题. 题意: 给你两个等差数列,求这两个数列的公共元素的数量. 每个数列按照以下格式给出: N F D(分别表示每个数列的长 ...

  3. UVALive 6763 / CSU 1446

    今天比赛的时候拿到的第一道题,其实挺简单的,求两等差序列中相同元素的个数,我想了一下就觉得,只要找到了第一个相等的点,然后后面求最大公约数就可以直接得到结果了 网上叫什么拓展欧几里得,我反正是按照我们 ...

  4. 为什么你SQL Server的数据库文件的Date modified没有变化呢?

    在SQL Server数据库中,数据文件与事务日志文件的修改日期(Date Modified)是会变化的,但是有时候你会发现你的数据文件或日志文件的修改日期(Date Modified)几个月甚至是半 ...

  5. 我的第一篇博客----LCS学习笔记

    LCS引论 在这篇博文中,博主要给大家讲一个算法----最长公共子序列(LCS)算法.我最初接触这个算法是在高中学信息学竞赛的时候.那时候花了好长时间理解这个算法.老师经常说,这种算法是母算法,即从这 ...

  6. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. Hackerrank11 LCS Returns 枚举+LCS

    Given two strings,  a and , b find and print the total number of ways to insert a character at any p ...

  9. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

随机推荐

  1. linux权限管理—基本权限

    目录 Linux权限管理-基本权限 一.权限的基本概述 二.权限修改命令chmod 三.基础权限设置案例 四.属主属组修改命令chown Linux权限管理-基本权限 一.权限的基本概述 1.什么是权 ...

  2. 利用sql语句建立全国省市区三级数据库

    一.创建数据库zone CREATE DATABASE IF ONT EXISTS zone; 二.建立省级表并增加数据 DROP TABLE IF EXISTS `provinces`; CREAT ...

  3. [HNOI2009]有趣的数列(卡塔兰数,线性筛)

    [HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1< ...

  4. 【串线篇】spring boot外部配置加载顺序

    SpringBoot也可以从以下位置加载配置: 原则仍然是优先级从高到低:高优先级的配置覆盖低优先级的配置,所有的配置会形成互补配置 1.命令行参数 所有的配置都可以在命令行上进行指定 java -j ...

  5. configerparser模块

    '''[mysqld]charater-server-set='utf8'default-engine='innodb'skip-grant-table=Trueport=3306 [client]u ...

  6. js获取(URL)地址栏参数

      //获取地址栏参数 //url为空时为调用当前url地址 //调用方法为 var params = getPatams(); function getParams(url) { var theRe ...

  7. windows 系统再重启后,USB口失效(鼠标、U盘都无法识别)的过程及解决方法

    今天都差点忘记写随笔.今天在工作中,将电脑重启了一次,悲催了.重启完成后,鼠标无法使用了.最初认为 鼠标的问题,就一直"砸",但后来换了鼠标,仍然不能使用,开始认为没这边简单,拿出 ...

  8. UE4在PSVR中的抗锯齿和优化相关知识

    UE4目前版本(4.15)在PS平台上并不支持MSAA,在未来的版本会加入.也就是说目前没有办法在PS平台上使用Forward Rendering + MSAA的组合 FXAA效率最高,但效果最差,只 ...

  9. 和风api爬取天气预报数据

    ''' 和风api爬取天气预报数据 目标:https://free-api.heweather.net/s6/weather/forecast?key=cc33b9a52d6e48de85247779 ...

  10. apache主要配置详解

    1. # Deny access to the entirety of your server's filesystem. You must # explicitly permit access to ...