描述

  某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as,  某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购买与出售都属于交易 )都需要间隔 W 天,手头股票总数不能超过 maxp 个. 请你想办法赚到最多的钱.

  T , maxp <= 2000

题解

  定义 F[ i ][ j ] 为到第 i 天, 剩余 j 张股票 , 能够赚到最多的钱。

  分如下几种情况:

  1.   股票仅从当天买: F[ i ][ j ] = - j * ap[ i ]
  2. 当天不买, 股票是之前买的 : F[ i ][ j ] = F[ i - 1][ j ]
  3. 在 w + 1 天之前的股票的基础上 购买若干股票得到: F[ i ][ j ] = F[ i - w - 1][ k ] - ( j - k ) * ap[ i ]    并且满足 j > k >= j - as
  4. 在 w + 1 天之前的股票的基础上 出售若干股票得到: F[ i ][ j ] = F[ i - w - 1][ k] + ( k - j ) * bp[ i ]    并且满足 j < k <= j + bs

  就可以写出一个 O(T * maxp * maxp) 的dp, 当然是 O (不能过)

  将 3 式子中的  F[ i - w - 1][ k ] + k * ap[i] 提取出来, 因为要满足最优解, 显然这个式子是越大越好, 又要满足 k >= j - as, 肯定是k 越大越好, 那么就可以用单调队列来进行优化

  4 式子也同理可得, 不过3, 4 需要分开处理

代码

 #include<cstring>
#include<cstdio>
#include<algorithm>
#define rd read()
#define rep(i,a,b) for( int i = (a); i <= (b); ++i )
#define per(i,a,b) for( int i = (a); i >= (b); --i )
using namespace std; const int N = 3e3; int t, ap[N], bp[N], as[N], bs[N], maxp, w, f[N][N], q[N]; int read() {
int X = , p = ; char c = getchar();
for(; c > '' || c < ''; c = getchar() ) if( c == '-' ) p = -;
for(; c >= '' && c <= ''; c = getchar()) X = X * + c - '';
return X * p;
} int cal1( int x ,int y ) {
return f[x - w - ][y] + ap[x] * y;
} int cal2( int x, int y ) {
return f[x - w - ][y] + bp[x] * y;
} int main()
{
t = rd, maxp = rd, w = rd;
rep( i, , t ) ap[i] = rd, bp[i] = rd, as[i] =rd, bs[i] =rd;
memset(f, , sizeof(f));
f[][] = ;
rep( i, , t ) {
rep( j, , as[i] ) f[i][j] = -ap[i] * j;
rep( j, , maxp )f[i][j] = max( f[i][j], f[i - ][j] );
if( i <= w) continue;
int l = , r = ;
rep( j, , maxp ) {
while( l <= r && q[l] < j - as[i] ) l++;
if( l <= r ) f[i][j] = max( f[i][j], f[i - w - ][ q[l] ] - ap[i] * ( j - q[l] ) );
while( l <= r && cal1( i, q[r] ) <= cal1( i, j ) ) r--;
q[++r] = j;
}
l = , r = ;
per( j, maxp, ) {
while( l <= r && q[l] > j + bs[i] ) l++;
if( l <= r ) f[i][j] = max( f[i][j], f[i - w - ][q[l]] + bp[i] * ( q[l] - j ) );
while( l <= r && cal2( i, q[r] ) <= cal2( i, j ) ) r--;
q[++r] = j;
}
}
int ans = ;
rep( i, , t ) ans = max( ans, f[i][]);
printf("%d\n",ans);
}

BZOJ1855 股票交易 单调队列优化 DP的更多相关文章

  1. 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP

    上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  4. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  5. SCOI 股票交易 单调队列优化dp

    这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...

  6. LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)

    传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...

  7. BZOJ 1855 股票交易 - 单调队列优化dp

    传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...

  8. 股票交易——单调队列优化DP

    题目描述 思路 蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了. $f[i][j]$表示第$i天有j$张股票的最大收益. 那么有四种选择: 不买股票:$f[i][j]=max( ...

  9. 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)

    传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...

随机推荐

  1. 2018面向对象程序设计(Java)第6周学习指导及要求

    2018面向对象程序设计(Java) 第6周学习指导及要求(2018.9.29-2018.10.8)   学习目标 深入理解程序设计中算法与程序的关系: 深入理解java程序设计中类与对象的关系: 理 ...

  2. Linux系统下面crontab选择默认编译器

    crontab修改默认编辑器 crontab默认编辑器为nano. 修改crontab默认编辑器为vi或者其他的编辑器. 法一: export EDITOR="/usr/bin/vim&qu ...

  3. JUC(java.util.concurrent)

    在 Java 5.0 提供了 java.util.concurrent (简称JUC )包,在此包中增加了在并发编程中很常用的实用工具类,用于定义类似于线程的自定义子系统,包括线程池.异步 IO 和轻 ...

  4. Dictionary在多线程情况下

    Add时出错 错误信息: Index was outside the bounds of the array. 详细信息: at System.Collections.Generic.Dictiona ...

  5. Gimbal Lock

    [Gimbal Lock] 万向锁源于欧拉角的是有序处理的.U3D中的序列为: y->x->z.当旋转y时,local坐标系与世界坐标系重合,所以y等于永远按惯性坐标旋转.当x旋转+/-9 ...

  6. Spring整合EHCache框架

    在Spring中使用缓存可以有效地避免不断地获取相同数据,重复地访问数据库,导致程序性能恶化. 在Spring中已经定义了缓存的CacheManager和Cache接口,只需要实例化便可使用. Spr ...

  7. 大数据入门到精通5--spark 的 RDD 的 reduce方法使用

    培训系列5--spark 的 RDD 的 reduce方法使用 1.spark-shell环境下准备数据 val collegesRdd= sc.textFile("/user/hdfs/C ...

  8. msf客户端渗透(三):提权、图形化payload

    对普通权限session提权 生成一个木马 开启Apache服务 将木马上传网页 被攻击者从这个网页上获取到这个木马 攻击者开启msf侦听 当被攻击者双击这个木马文件时 攻击者就获取到一个sessio ...

  9. Mysql 表约束 非空、唯一、主键、自增长、默认、外键约束(基础6)

    非空(not null).唯一(unique key).主键(primary key).自增长(auto_increment).默认约束(default) 准备基础环境: mysql> crea ...

  10. Spring 学习笔记

            Spring 的 Ioc 容器 所有的组件都是被动的( Passive),所有的组件初始化和调用都由容器负责.组件处在一个容器当中,由容器负责管理. BeanFactory 根据配置文 ...