2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)
传送门
生成函数简单题。
题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1,a2,...as},所有数都在[0,m−1][0,m-1][0,m−1]之间,mmm是一个质数,求满足全部由这个集合里的组成且长度为nnn且所有数之积与xxx在模mmm意义下相同的数列总数。
思路:对a1,a2,..,as,xa_1,a_2,..,a_s,xa1,a2,..,as,x全部化成gb1,gb2,...gbs,gyg^{b_1},g^{b_2},...g^{b_s},g^{y}gb1,gb2,...gbs,gy,然后就转乘法为加法。
于是只用求x1+x2+...+xn≡ymod  m−1x_1+x_2+...+x_n\equiv y\mod m-1x1+x2+...+xn≡ymodm−1,其中xi∈{b1,b2,...bs}x_i\in\{b_1,b_2,...b_s\}xi∈{b1,b2,...bs}的方案数。
对于xix_ixi可以构造出生成函数1+xb1+xb2+...+xbs1+x^{b_1}+x^{b_2}+...+x^{b_s}1+xb1+xb2+...+xbs,于是答案的生成函数就是(1+xb1+xb2+...+xbs)n(1+x^{b_1}+x^{b_2}+...+x^{b_s})^n(1+xb1+xb2+...+xbs)n,考虑到nnn很大可以用快速幂+nttnttntt解决。
注意特判ai=0a_i=0ai=0的情况以及每次nttnttntt完了之后要重新把多项式的最高次数控制为m−2m-2m−2
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
typedef long long ll;
const int N=3e6+5,mod=1004535809;
int M,lim=1,tim=0,pos[N],a[N],P,n,x,idx[N];
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
inline int dec(int a,int b){return a>=b?a-b:a-b+mod;}
inline int mul(int a,int b){return (ll)a*b%mod;}
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=mul(a,a))if(p&1)ret=mul(ret,a);return ret;}
inline void ntt(int a[],int type){
for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
for(ri wn,mult=(mod-1)>>1,typ=type==1?3:334845270,mid=1;mid<lim;mid<<=1,mult>>=1){
wn=ksm(typ,mult);
for(ri j=0,len=mid<<1;j<lim;j+=len)for(ri w=1,k=0,a0,a1;k<mid;++k,w=mul(w,wn)){
a0=a[j+k],a1=mul(w,a[j+k+mid]);
a[j+k]=add(a0,a1),a[j+k+mid]=dec(a0,a1);
}
}
if(type==-1)for(ri inv=ksm(lim,mod-2),i=0;i<lim;++i)a[i]=mul(a[i],inv);
}
inline void poly_mul(int a[],int b[]){
static int A[N],B[N];
for(ri i=0;i<lim;++i)A[i]=a[i],B[i]=b[i];
ntt(A,1),ntt(B,1);
for(ri i=0;i<lim;++i)A[i]=mul(A[i],B[i]);
ntt(A,-1);
for(ri i=0;i<lim;++i)a[i]=A[i];
for(ri i=lim-1;i>=M-1;--i)a[i-M+1]=add(a[i-M+1],a[i]),a[i]=0;
}
inline void solve(int a[],int p){
static int ret[N];
memset(ret,0,sizeof(ret)),ret[0]=1;
for(;p;p>>=1,poly_mul(a,a))if(p&1)poly_mul(ret,a);
cout<<ret[x];
}
inline bool check(int g){
for(ri i=0;i<M;++i)idx[i]=-1;
for(ri i=0,mul=1;i<M-1;++i,mul=mul*g%M){
if(~idx[mul])return 0;
idx[mul]=i;
}
return 1;
}
inline void init(){
while(lim<=M*2)lim<<=1,++tim;
for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
for(ri g=1;!check(g);++g);
}
int main(){
P=read(),M=read(),init(),x=idx[read()],n=read();
while(n--){
int x=read();
if(!x)continue;
a[idx[x]]=1;
}
solve(a,P);
return 0;
}
2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)的更多相关文章
- LOJ 2183 / SDOI2015 序列统计 (DP+矩阵快速幂)
题面 传送门 分析 考虑容斥原理,用总的方案数-不含质数的方案数 设\(dp1[i][j]\)表示前i个数,和取模p为j的方案数, \(dp2[i][j]\)表示前i个数,和取模p为j的方案数,且所有 ...
- [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1888 Solved: 898[Submit][Statu ...
- 【bzoj3992】[SDOI2015]序列统计 原根+NTT
题目描述 求长度为 $n$ 的序列,每个数都是 $|S|$ 中的某一个,所有数的乘积模 $m$ 等于 $x$ 的序列数目模1004535809的值. 输入 一行,四个整数,N.M.x.|S|,其中|S ...
- BZOJ3992: [SDOI2015]序列统计(NTT 原根 生成函数)
题意 题目链接 给出大小为\(S\)的集合,从中选出\(N\)个数,满足他们的乘积\(\% M = X\)的方案数 Sol 神仙题Orz 首先不难列出最裸的dp方程,设\(f[i][j]\)表示选了\ ...
- BZOJ3992: [SDOI2015]序列统计
Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列. ...
- bzoj 3992: [SDOI2015]序列统计【原根+生成函数+NTT+快速幂】
还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0 ...
- BZOJ3992 [SDOI2015]序列统计 【生成函数 + 多项式快速幂】
题目 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题 ...
- 2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)
传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0) ...
- 【BZOJ3992】【SDOI2015】序列统计 EGF+多项式快速幂+循环卷积
如果是求$n$个数之和在模$m$意义下为$x$,那么做法是显然的. 但是这道题问的是$n$个数之积在模m意义下为$x$,那么做法就和上面的问题不同. 考虑如何把乘法转换成加法(求log): 题目中有一 ...
随机推荐
- PHP如何处理yyyyMMddHHmmssSSSZ?
PHP如何处理yyyyMMddHHmmssSSSZ? 更新: 2016-01-05 12:45 作者: wecandoitforev PHP编程中,时间,日期的应用是必不可少的.有一种日期格式:yyy ...
- 数据库(mysql)
一.left join right join inner join left join(左连接),在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的记录. right join(右 ...
- 项目打包 TestFlight用法
TestFlight用法 包教包会(iOS APP官方测试工具) https://www.jianshu.com/p/4be185e4069c
- java 基础之--传统网络编程
什么是socket ? socket 是连接运行在网络上的两个程序间的双向通讯端点 服务器将某一套接字绑定到一个特定的端口,并通过这一套接字等待和监听客户端的的连接请求 客户端通过这个端口与服务器进行 ...
- 交叉编译libudev
一.交叉编译libudev下载udev-182.tar.xz 下载网址:https://mirrors.edge.kernel.org/pub/linux/utils/kernel/hotplug/ ...
- ubuntu下sudo apt-get update Sources 404 Not Found 解决方法
刚安装了ubuntu之后的主要安装命令无非就是apt-get install了,然而很多都在这里就夭折了. 使用apt-get install ***需要先执行apt-get update 加载文件包 ...
- DOS下的安全空间
我们需要直接向一段内存中写入内容: 这段内存空间不应存放系统或其他程序的数据或代码,否则写入操作很可能引发错误: DOS方式下,一般情况,0:200~0:2ff空间中没有系统或其他程序的数据或代码; ...
- 线特征---EDLines原理(六)
参考文献:EDLines: A real-time line segment detector with a false detection control ----Cuneyt Akinlar , ...
- MVC中Ajax post 和Ajax Get——提交对象
HTTP 请求:GET vs. POST两种在客户端和服务器端进行请求-响应的常用方法是:GET 和 POST.GET - 从指定的资源请求数据POST - 向指定的资源提交要处理的数据GET 基本上 ...
- Linux操作系统-系统安装与分区
.磁盘分区 使用分区工具在磁盘上划分几个逻辑部分,一旦分成几个分区,不同类型的目录和文件可以存储进不同的分区2.分区类型主分区:最多只能有4个扩展分区:最多只能有1个:主分区加扩展分区最多有4个:扩展 ...