pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)

首先介绍一下基本的:

data : array-like, dict, or scalar value,数组类型

index : array-like or Index (1d),

dtype : numpy.dtype or None

copy : boolean, default False

初始化时,如果只输入data和index,则得保证两者长度相同,否则报错:
>>> pd.Series(range(4),index=list("list"))
l 0
i 1
s 2
t 3
dtype: int32 >>> pd.Series(range(5),index=list("list"))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "E:\Python3\lib\site-packages\pandas\core\series.py", line 245, in __init__
data = SingleBlockManager(data, index, fastpath=True)
File "E:\Python3\lib\site-packages\pandas\core\internals.py", line 4070, in __init__
fastpath=True)
File "E:\Python3\lib\site-packages\pandas\core\internals.py", line 2685, in make_block
return klass(values, ndim=ndim, fastpath=fastpath, placement=placement)
File "E:\Python3\lib\site-packages\pandas\core\internals.py", line 109, in __init__
len(self.mgr_locs)))
ValueError: Wrong number of items passed 5, placement implies 4 >>> pd.Series(range(4),index=list("lists"))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "E:\Python3\lib\site-packages\pandas\core\series.py", line 245, in __init__
data = SingleBlockManager(data, index, fastpath=True)
File "E:\Python3\lib\site-packages\pandas\core\internals.py", line 4070, in __init__
fastpath=True)
File "E:\Python3\lib\site-packages\pandas\core\internals.py", line 2685, in make_block
return klass(values, ndim=ndim, fastpath=fastpath, placement=placement)
File "E:\Python3\lib\site-packages\pandas\core\internals.py", line 109, in __init__
len(self.mgr_locs)))
ValueError: Wrong number of items passed 4, placement implies 5

创建一个series:

>>> se = pd.Series(range(5))
>>> se.name = "values"
>>> se = pd.Series(range(5),name="values")
>>> se
0 0
1 1
2 2
3 3
4 4
Name: values, dtype: int32
# 两者效果等价

可以更改index:

>>> se.index
RangeIndex(start=0, stop=5, step=1) >>> se.index = list("abcde")
>>> se
a 0
b 1
c 2
d 3
e 4
Name: values, dtype: int32

将index列命名:

>>> se.index.name = "id"
>>> se
id
a 0
b 1
c 2
d 3
e 4
Name: values, dtype: int32

转化为dataframe:

>>> se.to_frame()
values
id
a 0
b 1
c 2
d 3
e 4

选出一个:

>>> se["b"]
1
>>> se.loc["b"]
1

但是里面的字符串不能用数字,(否则会被认为是切片操作选择):

>>> se[1]   # 元素充足时
1 >>> se[5] # 元素不足时,报错
Traceback (most recent call last):
File "E:\Python3\lib\site-packages\pandas\indexes\base.py", line 2169, in get_value
tz=getattr(series.dtype, 'tz', None))
File "pandas\index.pyx", line 98, in pandas.index.IndexEngine.get_value (pandas\index.c:3557)
File "pandas\index.pyx", line 106, in pandas.index.IndexEngine.get_value (pandas\index.c:3240)
File "pandas\index.pyx", line 154, in pandas.index.IndexEngine.get_loc (pandas\index.c:4279)
File "pandas\src\hashtable_class_helper.pxi", line 732, in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:13742)
File "pandas\src\hashtable_class_helper.pxi", line 740, in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:13696)
KeyError: 5 During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "E:\Python3\lib\site-packages\pandas\core\series.py", line 603, in __getitem__
result = self.index.get_value(self, key)
File "E:\Python3\lib\site-packages\pandas\indexes\base.py", line 2175, in get_value
return tslib.get_value_box(s, key)
File "pandas\tslib.pyx", line 946, in pandas.tslib.get_value_box (pandas\tslib.c:19053)
File "pandas\tslib.pyx", line 962, in pandas.tslib.get_value_box (pandas\tslib.c:18770)
IndexError: index out of bounds >>> se[5] = "s" # 也是错误的,越界了
												

pandas的Series的更多相关文章

  1. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  2. 金融量化分析【day110】:Pandas的Series对象

    一.pandas简介安装 pandas是一个强大的python数据分析的工具包 pandsa是基于NumPy构建的 1.pandas的主要功能 1.具备对其功能的数据结构DataFrame.Serie ...

  3. Pandas之Series+DataFrame

    Series是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,python对象) index查看series索引,values查看series值 series相比于ndarray,是一 ...

  4. Python之Pandas中Series、DataFrame

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  5. 数据科学:Pandas 和 Series 的 describe() 方法

    一.Pandas 和 Series 的 describe() 方法 1)功能 功能:对数据中每一列数进行统计分析:(以“列”为单位进行统计分析) 默认只先对“number”的列进行统计分析: 一列数据 ...

  6. Pandas 数据结构Series:基本概念及创建

    Series:"一维数组" 1. 和一维数组的区别 # Series 数据结构 # Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象 ...

  7. Pandas之Series

    # Series 数据结构 # Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引 import numpy as np impor ...

  8. pandas学习series和dataframe基础

    PANDAS 的使用 一.什么是pandas? 1.python Data Analysis Library 或pandas 是基于numpy的一种工具,该工具是为了解决数据分析人物而创建的. 2.p ...

  9. Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

随机推荐

  1. 使用EasyNVR无插件流媒体服务器接口和EasyPlayer.js播放器插件实现web网页H5播放无插件

    1.背景需求 很多客户在使用EasyNVR无插件流媒体服务器时,不喜欢产品化的界面,有时可能满足不了日常观看使用的需求.因此软件提供丰富的HTTP接口,供第三方平台调用集成.但是有时客户这边可能没有专 ...

  2. Python之可迭代对象、迭代器、生成器

    在使用Python的过程中,很容易混淆如下几个关联的概念: 1.容器(container) 2.可迭代对象(Iterable) 3.迭代器(Iterator) 4.生成器(generator) 5.生 ...

  3. git github usage

    以gerrit-trigger-plugin为例,下面的链接都是从相应页面上直接拷贝的. 法一:不用github的账号,打开这个库在github上的主页,运行下面命令即可 read only 运行命令 ...

  4. Delphi Pdf的使用方法

    此方法安装了llPDFLib.v3.6 控件.对pdf左侧.右侧正文进行了操作. procedure TForm1.Button1Click(Sender: TObject); var node,nd ...

  5. Django 之 序列化

    Django之序列化 关于Django中的序列化主要应用在将数据库中检索的数据返回给客户端用户,特别的Ajax请求一般返回的为Json格式. serializers 1 2 3 4 5 from dj ...

  6. Python操作Redis(一)

    redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorted set ...

  7. python requests 使用

    快速上手 迫不及待了吗?本页内容为如何入门 Requests 提供了很好的指引.其假设你已经安装了 Requests.如果还没有,去安装一节看看吧. 首先,确认一下: Requests 已安装 Req ...

  8. spring 项目tomcat 8.0.2 发布报错:Could not initialize class org.hibernate.validator.engine.ConfigurationImpl

    tomcat 8 项目发布遇到的错 [ERROR] -- ::, org.springframework.web.servlet.DispatcherServlet - Context initial ...

  9. Numpy用于数组的文件输入输出

    这一章比较简单,内容也比较少.而且对于文件的读写,还是使用pandas比较好.numpy主要是读写文本数据和二进制数据的. 将数组以二进制的格式保存到硬盘上 主要的函数有numpy.save和nump ...

  10. 20145210姚思羽《网络对抗》MSF基础应用实验

    20145210姚思羽<网络对抗>MSF基础应用实验 实验后回答问题 1.用自己的话解释什么是exploit,payload,encode. exploit就是进行攻击的那一步 paylo ...