点此看题面

大致题意: 给你一个集合,求所有子集异或和之和。

大致思路

首先,我们很容易想到去对二进制下每一位分别讨论。

枚举当前位,并设共有\(x\)个数当前位上为\(1\),则有\((n-x)\)个数当前位上为\(0\)。

对于\(x=0\)显然无法使这一位为\(1\),否则当且仅当选取的子集中有奇数个数这一位上为\(1\),这一位异或之后才会为\(1\)。

又由于这一位为\(0\)的数选与不选毫无影响,因此这一位为\(1\)的方案数为\(x\)个数中选取奇数个数的方案数乘上\(2^{n-x}\)

则我们主要考虑如何求\(x\)个数中选取奇数个数的方案数。

容易想到去猜测\(x\)个数中选取奇数个数的方案数与选取偶数个数的方案数相同,即皆为\(2^{x-1}\)。

实际上,由二项式定理我们可知:

\[(1-1)^x=\sum_{i=1}^x(-1)^iC_x^i=0
\]

由这个式子就可以推得上面的结论是正确的了。

所以对于任意\(x≠0\)的一位,其方案数即为\(2^{x-1}\cdot2^{n-x}=2^{n-1}\)。

综上,我们得出结论:对于二进制下第\(k\)位,若这一位有\(1\),则可产生\(2^k\cdot2^{n-1}\)的贡献。

因此将所有数或起来,然后乘上\(2^{n-1}\)就是答案了。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define X 998244353
using namespace std;
int n;
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C^FS?FO[C++]=c:(fwrite(FO,1,C,stdout),FO[(C=0)++]=c))
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T,C;char c,*A,*B,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void clear() {fwrite(FO,1,C,stdout),C=0;}
}F;
I int Qpow(RI x,RI y) {RI t=1;W(y) y&1&&(t=1LL*t*x%X),x=1LL*x*x%X,y>>=1;return t;}//快速幂
int main()
{
RI Tt,i,s,x;F.read(Tt);W(Tt--)
{
for(F.read(n),s=0,i=1;i<=n;++i) F.read(x),s|=x;//统计所有数或值
F.writeln(1LL*s*Qpow(2,n-1)%X);//乘上2的n-1次方
}return F.clear(),0;
}

【洛谷5390】[Cnoi2019] 数学作业(位运算)的更多相关文章

  1. 【洛谷 P4934】 礼物 (位运算+DP)

    题目链接 位运算+\(DP\)=状压\(DP\)?(雾 \(a\&b>=min(a,b)\)在集合的意义上就是\(a\subseteq b\) 所以对每个数的子集向子集连一条边,然后答案 ...

  2. 洛谷P3216 [HNOI2011] 数学作业 [矩阵加速,数论]

    题目传送门 数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N和 M,要求计算 Concatenate (1 .. N)Mod M 的值,其中 C ...

  3. 洛谷P3216 [HNOI2011]数学作业

    题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 .. N) Mod M 的值,其中 Concatenat ...

  4. 【洛谷】【线段树+位运算】P2574 XOR的艺术

    [题目描述:] AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个伤害串为长度为n的01串. 2. 给定一个范围[ ...

  5. 洛谷 P3216 [HNOI2011]数学作业

    最近学了矩阵,kzj大佬推荐了我这一道题目. 乍一眼看上去,没看出是矩阵,就随便打了一个暴力,30分. 然后仔细分析了一波,发现蛮简单的. 结果全wa了,先看看下面的错误分析吧! 首先,设f[n]为最 ...

  6. [bzoj2326] [洛谷P3216] [HNOI2011] 数学作业

    想法 最初的想法就是记录当前 \(%m\) 值为cur,到下一个数时 \(cur=cur \times 10^x + i\) n这么大,那就矩阵乘法呗. 矩阵乘法使用的要点就是有一个转移矩阵会不停的用 ...

  7. 洛谷试炼场-简单数学问题-P1403 [AHOI2005]-因数

    洛谷试炼场-简单数学问题 P1403 [AHOI2005]约数研究 Description 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机"Samuel I ...

  8. 洛谷试炼场-简单数学问题-P1045 麦森数-高精度快速幂

    洛谷试炼场-简单数学问题 B--P1045 麦森数 Description 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果PP是个素数,2^P-1 不一定也是素数.到19 ...

  9. P5390 [Cnoi2019]数学作业

    P5390 [Cnoi2019]数学作业求子集异或和的和拆成2进制,假设有x个数这一位为1,剩下n-x个数对答案没有贡献,对于这一位而言,对答案的贡献就是,x个数选奇数个数的方案数*2^(n-x).由 ...

  10. 洛谷试炼场-简单数学问题-P1088 火星人

    洛谷试炼场-简单数学问题 A--P1088 火星人 Description 人类终于登上了火星的土地并且见到了神秘的火星人.人类和火星人都无法理解对方的语言,但是我们的科学家发明了一种用数字交流的方法 ...

随机推荐

  1. weex前端式写法解决方案---eros

    前言 如果想用前端的方式写一个app怎么办呢? 如果你用的是 React,那么它已经有了一个比较完善的体系跟社区.如果你用的是Vue又不想花费太多时间去重新学习React,那么目前比较靠谱的方案就是w ...

  2. 避免picture图片无法删除,提示正在被其他进程使用

    pictureBox1.Image = Image.FromStream(ByteToStream(SetImageToByteArray(cutImgPath))); #region 将文件转换成流 ...

  3. spring boot 使用WebSocket与前端进行byte字节数组交互

    一.装逼前先热热身 无论是比较传统的 web项目 还是近几年流行的前后端分离,后端只独立提供数据交互接口服务的项目,都避免不了数据之间交互格式的选择. 从很早之前的 xml 格式 到现在最火热的jso ...

  4. DHCP DHCPv6

    为了给网络客户机自动分配IP地址以及生成所需的配置参数,IETF分别给IPV4和IPV6网络定义了相关的协议标准,即DHCP(RFC2131)和DHCPV6(RFC3315),以及扩充的选项标准.本文 ...

  5. 总结工作中用到的ES6语法,方便工作中查看,也总结一下经验

    1.模板字符串: 表现形式:${} 举例子: import axios from 'axios'; let base = 'https://www.baidu.com/home/msg/data/pe ...

  6. Spring配置文件没有提示问题+log4j

    1.Spring中引入schema约束,把约束文件引入Myeclipse (1)复制约束路径http://www.springframework.org/schema/beans/spring-bea ...

  7. Gym 100971D Laying Cables 二分 || 单调栈

    要求找出每个a[i],找到离他最近而且权值比它大的点,若距离相同,输出权利最大的那个 我的做法有点复杂,时间也要500+ms,因为只要时间花在了map上. 具体思路是模拟一颗树的建立过程,对于权值最大 ...

  8. Linux与DOS的常用命令比较

    命令类型 DOS Linux DOS示例 Linux示例 复制文件   copy cp copy c:\teacher1\file1 d:\tmp cp /home/teacher1/file1 /t ...

  9. [转]logX<X对所有的X>0成立

    本文引用地址:http://blog.sciencenet.cn/blog-1865911-831450.html 此文来自科学网何召卫博客,转载请注明出处. 这个命题网上有多种证法,有人甚至采用斜率 ...

  10. pat1062. Talent and Virtue (25)

    1062. Talent and Virtue (25) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Li Abou ...