# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,manifold def load_data():
'''
加载用于降维的数据
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
return iris.data,iris.target #等度量映射Isomap降维模型
def test_Isomap(*data):
X,y=data
# 依次考察降维目标为 4维、3维、2维、1维
for n in [4,3,2,1]:
isomap=manifold.Isomap(n_components=n)
isomap.fit(X)
print('reconstruction_error(n_components=%d) : %s'%(n, isomap.reconstruction_error())) # 产生用于降维的数据集
X,y=load_data()
# 调用 test_Isomap
test_Isomap(X,y)

def plot_Isomap_k(*data):
'''
测试 Isomap 中 n_neighbors 参数的影响,其中降维至 2维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
isomap=manifold.Isomap(n_components=2,n_neighbors=k)
#原始数据集转换到二维
X_r=isomap.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 Isomap 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,color=color)
ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("Isomap")
plt.show() # 调用 plot_Isomap_k
plot_Isomap_k(X,y)

def plot_Isomap_k_d1(*data):
'''
测试 Isomap 中 n_neighbors 参数的影响,其中降维至 1维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
isomap=manifold.Isomap(n_components=1,n_neighbors=k)
#原始数据集转换到 1 维
X_r=isomap.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 Isomap 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position],np.zeros_like(X_r[position]),label="target= %d"%label,color=color)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("Isomap")
plt.show() # 调用 plot_Isomap_k_d1
plot_Isomap_k_d1(X,y)

吴裕雄 python 机器学习——等度量映射Isomap降维模型的更多相关文章

  1. 吴裕雄 python 机器学习——局部线性嵌入LLE降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  2. 吴裕雄 python 机器学习——主成份分析PCA降维

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  3. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  4. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

  5. 吴裕雄 python 机器学习——数据预处理二元化Binarizer模型

    from sklearn.preprocessing import Binarizer #数据预处理二元化Binarizer模型 def test_Binarizer(): X=[[1,2,3,4,5 ...

  6. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  9. 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

随机推荐

  1. JSON-lib框架,转换JSON、XML

    json-lib工具包 下载地址: http://sourceforge.net/projects/json-lib/json-lib还需要以下依赖包: jakarta commons-lang 2. ...

  2. Linux驱动中获取系统时间

    最近在做VoIP方面的驱动,总共有16个FXS口和FXO口依次初始化,耗用的时间较多.准备将其改为多线程,首先需要确定哪个环节消耗的时间多,这就需要获取系统时间. #include <linux ...

  3. uboot指令和环境变量

    一.uboot指令 1.printenv(pri) - 打印环境变量 2.setenv - 设置环境变量,和saveenv 配合使用 3.saveenv - 保存环境变量 4.run - 执行设置好的 ...

  4. spark 算子分析

    别的不说先上官网: action 这些算子中需要注意: 1.reduce 和 reduceByKey 虽说都有reduce,但是一个是action级别,一个是transformation级别,速度上会 ...

  5. WCF svcutil工具

    通过SvcUtil.exe生成客户端代码和配置 WCF服务调用通过两种常用的方式:一种是借助代码生成工具SvcUtil.exe或者添加服务引用的方式,一种是通过ChannelFactory直接创建服务 ...

  6. MYSQL BENCHMARK()函数

    MySQL有一个内置的BENCHMARK()函数,可以测试某些特定操作的执行速度. BENCHMARK(count,expr) BENCHMARK会重复计算expr表达式count次,通过这种方式就可 ...

  7. HTTP-Runoob:HTTP请求头信息

    ylbtech-HTTP-Runoob:HTTP请求头信息 1.返回顶部 1. HTTP 响应头信息 HTTP请求头提供了关于请求,响应或者其他的发送实体的信息. 在本章节中我们将具体来介绍HTTP响 ...

  8. java获取多个汉字的拼音首字母

    本文属于http://java.chinaitlab.com/base/803353.html原创!!! public class PinYin2Abbreviation { // 简体中文的编码范围 ...

  9. 每天一道算法题(11)——栈的push、pop 序列

    题目:输入两个整数序列.其中一个序列表示栈的push 顺序,判断另一个序列有没有可能是对应的pop 顺序.为了简单起见,我们假设push 序列的任意两个整数都是不相等的. 例如:输入的push 序列是 ...

  10. 使用Java读取JSON数据

    ----------------siwuxie095                         JSON 官网:http://www.json.org/     在官网页面的下方,是 JSON ...