吴裕雄 python 机器学习——等度量映射Isomap降维模型
# -*- coding: utf-8 -*- import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,manifold def load_data():
'''
加载用于降维的数据
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
return iris.data,iris.target #等度量映射Isomap降维模型
def test_Isomap(*data):
X,y=data
# 依次考察降维目标为 4维、3维、2维、1维
for n in [4,3,2,1]:
isomap=manifold.Isomap(n_components=n)
isomap.fit(X)
print('reconstruction_error(n_components=%d) : %s'%(n, isomap.reconstruction_error())) # 产生用于降维的数据集
X,y=load_data()
# 调用 test_Isomap
test_Isomap(X,y)

def plot_Isomap_k(*data):
'''
测试 Isomap 中 n_neighbors 参数的影响,其中降维至 2维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
isomap=manifold.Isomap(n_components=2,n_neighbors=k)
#原始数据集转换到二维
X_r=isomap.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 Isomap 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,color=color)
ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("Isomap")
plt.show() # 调用 plot_Isomap_k
plot_Isomap_k(X,y)

def plot_Isomap_k_d1(*data):
'''
测试 Isomap 中 n_neighbors 参数的影响,其中降维至 1维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
isomap=manifold.Isomap(n_components=1,n_neighbors=k)
#原始数据集转换到 1 维
X_r=isomap.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 Isomap 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position],np.zeros_like(X_r[position]),label="target= %d"%label,color=color)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("Isomap")
plt.show() # 调用 plot_Isomap_k_d1
plot_Isomap_k_d1(X,y)

吴裕雄 python 机器学习——等度量映射Isomap降维模型的更多相关文章
- 吴裕雄 python 机器学习——局部线性嵌入LLE降维模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——主成份分析PCA降维
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...
- 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型
from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...
- 吴裕雄 python 机器学习——数据预处理二元化Binarizer模型
from sklearn.preprocessing import Binarizer #数据预处理二元化Binarizer模型 def test_Binarizer(): X=[[1,2,3,4,5 ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——人工神经网络与原始感知机模型
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...
- 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
随机推荐
- java代码流类
总结:读取到的是字节型转换成字符串. package com.c2; import java.io.*; public class tkrp { public static void main(Str ...
- ABP模块配置
介绍 我们知道ABP中模块的配置都是通过模块的Configuration属性来设置的.例如在模块的生命周期方法中可以进行一系列的配置 审计 MQ Redis....也可以替换一些ABP默认配置 通常我 ...
- Navicat for Oracle中如何使用外键
转自:https://blog.csdn.net/weixin_39183543/article/details/80555104 1. 外键名最后保存的时候自动生成: 2. 参考模式自动生成: 3. ...
- 使用mui框架后a标签无法跳转
由于最近工作项目上使用到前台mui框架,笔者在将H5转换为jsp时,遇见各种各样问题,原因归结为对mui框架不熟悉,今天就遇见一个特别奇怪的问题,界面中超链接<a>标签无法跳转,笔者试着添 ...
- __call()和__callStatic()方法
__call() 当对象访问不存在的方法时,__call()方法会被自动调用__callStatic() 当对象访问不存在的静态方法时,__callStatic()方法会被自动调用 这两个方法在PHP ...
- vue 的全局拦截器
使用拦截器 你可以截取请求或响应在被 then 或者 catch 处理之前 mounted:function(){ Vue.http.inserceptors.push(function(resque ...
- 04 UUID
1 什么是UUID UUID 的目的是让分布式系统中的所有元素,都能有唯一的辨识资讯,而不需要透过中央控制端来做辨识资讯的指定. 2 应用场景 MySQL数据库不能想oracle数据库那样创建序列,就 ...
- 2用java代码实现冒泡排序算法(转载)
import java.util.Scanner; public class Maopao { public static void main(String[] args) { System.out. ...
- netty源码阅读之UnpooledByteBufAllocator
使用IDEA阅读源码Navigate下面的工具是个好东西 .可以帮助分析类的结构等 ByteBufAllocator主要用来生成三种ByteBuf :HeadBuffer,DirectBuffer,C ...
- 关于LIst Set Map 异常的知识点---我的笔记
今天新的内容1.List接口2.Set接口3.Map集合4.异常==================================================================== ...