吴裕雄 python 机器学习——等度量映射Isomap降维模型
# -*- coding: utf-8 -*- import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,manifold def load_data():
'''
加载用于降维的数据
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
return iris.data,iris.target #等度量映射Isomap降维模型
def test_Isomap(*data):
X,y=data
# 依次考察降维目标为 4维、3维、2维、1维
for n in [4,3,2,1]:
isomap=manifold.Isomap(n_components=n)
isomap.fit(X)
print('reconstruction_error(n_components=%d) : %s'%(n, isomap.reconstruction_error())) # 产生用于降维的数据集
X,y=load_data()
# 调用 test_Isomap
test_Isomap(X,y)

def plot_Isomap_k(*data):
'''
测试 Isomap 中 n_neighbors 参数的影响,其中降维至 2维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
isomap=manifold.Isomap(n_components=2,n_neighbors=k)
#原始数据集转换到二维
X_r=isomap.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 Isomap 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,color=color)
ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("Isomap")
plt.show() # 调用 plot_Isomap_k
plot_Isomap_k(X,y)

def plot_Isomap_k_d1(*data):
'''
测试 Isomap 中 n_neighbors 参数的影响,其中降维至 1维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
isomap=manifold.Isomap(n_components=1,n_neighbors=k)
#原始数据集转换到 1 维
X_r=isomap.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 Isomap 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position],np.zeros_like(X_r[position]),label="target= %d"%label,color=color)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("Isomap")
plt.show() # 调用 plot_Isomap_k_d1
plot_Isomap_k_d1(X,y)

吴裕雄 python 机器学习——等度量映射Isomap降维模型的更多相关文章
- 吴裕雄 python 机器学习——局部线性嵌入LLE降维模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——主成份分析PCA降维
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...
- 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型
from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...
- 吴裕雄 python 机器学习——数据预处理二元化Binarizer模型
from sklearn.preprocessing import Binarizer #数据预处理二元化Binarizer模型 def test_Binarizer(): X=[[1,2,3,4,5 ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——人工神经网络与原始感知机模型
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...
- 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
随机推荐
- JSON-lib框架,转换JSON、XML
json-lib工具包 下载地址: http://sourceforge.net/projects/json-lib/json-lib还需要以下依赖包: jakarta commons-lang 2. ...
- Linux驱动中获取系统时间
最近在做VoIP方面的驱动,总共有16个FXS口和FXO口依次初始化,耗用的时间较多.准备将其改为多线程,首先需要确定哪个环节消耗的时间多,这就需要获取系统时间. #include <linux ...
- uboot指令和环境变量
一.uboot指令 1.printenv(pri) - 打印环境变量 2.setenv - 设置环境变量,和saveenv 配合使用 3.saveenv - 保存环境变量 4.run - 执行设置好的 ...
- spark 算子分析
别的不说先上官网: action 这些算子中需要注意: 1.reduce 和 reduceByKey 虽说都有reduce,但是一个是action级别,一个是transformation级别,速度上会 ...
- WCF svcutil工具
通过SvcUtil.exe生成客户端代码和配置 WCF服务调用通过两种常用的方式:一种是借助代码生成工具SvcUtil.exe或者添加服务引用的方式,一种是通过ChannelFactory直接创建服务 ...
- MYSQL BENCHMARK()函数
MySQL有一个内置的BENCHMARK()函数,可以测试某些特定操作的执行速度. BENCHMARK(count,expr) BENCHMARK会重复计算expr表达式count次,通过这种方式就可 ...
- HTTP-Runoob:HTTP请求头信息
ylbtech-HTTP-Runoob:HTTP请求头信息 1.返回顶部 1. HTTP 响应头信息 HTTP请求头提供了关于请求,响应或者其他的发送实体的信息. 在本章节中我们将具体来介绍HTTP响 ...
- java获取多个汉字的拼音首字母
本文属于http://java.chinaitlab.com/base/803353.html原创!!! public class PinYin2Abbreviation { // 简体中文的编码范围 ...
- 每天一道算法题(11)——栈的push、pop 序列
题目:输入两个整数序列.其中一个序列表示栈的push 顺序,判断另一个序列有没有可能是对应的pop 顺序.为了简单起见,我们假设push 序列的任意两个整数都是不相等的. 例如:输入的push 序列是 ...
- 使用Java读取JSON数据
----------------siwuxie095 JSON 官网:http://www.json.org/ 在官网页面的下方,是 JSON ...