洛谷P4735题解
若想要深入学习可持久化0-1Trie树,传送门。
Description:
给定数列 \(\{a_n\}\) ,支持两种操作:
- 在数列尾添加一个数 \(x\) ,数列长度变成 \(n+1\) ;
- 给定闭区间 \([l,r]\) 和一个数 \(x\) ,求:
\]
Method:
定义 \(Xorsum_i\) 为 \(\bigoplus_{i=1}^{n}a_i\) ,即前缀异或和。我们显然可以得到
\]
注:\(x\bigoplus x=0\) , \(x \bigoplus 0=x\)
我们发现 \(Xorsum_n\bigoplus x\) 是一个定值,我们只需要维护 \(Xorsum_{pos-1}\) 即可。
考虑用可持久化0-1Trie树维护。与主席树思路相同 ,我们建立 \(n+1\) 个版本的0-1Trie树,查询的时候运用贪心的思路即可。
可持久化线段树同样支持“前缀和”的思想,我们最后只需要在第 \(r\) 个版本的0-1Trie树上查找 \(l\) 位置即可。
本题毒瘤卡常,本人人丑常数大,用了fread等各种卡常操作才通过。并且由于luogu评测姬的原因(大雾,已经通过的代码又会T掉woc。卡不过的话,开o2吧。
Code:
#include<bits/stdc++.h>
#define Maxn 600010
#define Maxdep 23
#define getchar()(p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[1<<21],*p1=buf,*p2=buf;
inline void read(int &x)
{
int f=1;x=0;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m;
int sum[Maxn];
struct trie
{
trie *chd[2];
int symbl;
trie()
{
for(int i=0;i<2;i++) chd[i]=NULL;
symbl=0;
}
}*root[Maxn],tree[Maxn<<5],*tail;
void Init(){tail=tree;}
void build(trie *&p,int dep)
{
p=new (tail++)trie();
if(dep<0) return ;
build(p->chd[0],dep-1);
}
void update(trie *&p,trie *flag,int dep,int i)
{
p=new (tail++)trie();
if(flag) *p=*flag;
if(dep<0) return (void)(p->symbl=i);
int tmp=(sum[i]>>dep)&1;//判断是1还是0
if(!tmp) update(p->chd[0],flag?flag->chd[0]:NULL,dep-1,i);
else update(p->chd[1],flag?flag->chd[1]:NULL,dep-1,i);
if(p->chd[0]) p->symbl=std::max(p->symbl,p->chd[0]->symbl);
if(p->chd[1]) p->symbl=std::max(p->symbl,p->chd[1]->symbl);
}
int query(trie *p,int x,int dep,int limit)
{
if(dep<0) return sum[p->symbl]^x;
int tmp=(x>>dep)&1;
if(p->chd[tmp^1]&&p->chd[tmp^1]->symbl>=limit) return query(p->chd[tmp^1],x,dep-1,limit);
return query(p->chd[tmp],x,dep-1,limit);
}
signed main()
{
Init();
read(n),read(m);
build(root[0],Maxdep);
for(int i=1,x;i<=n;i++)
{
read(x);
sum[i]=sum[i-1]^x;
update(root[i],root[i-1],Maxdep,i);
}
for(int i=1;i<=m;i++)
{
char ch=getchar();
while(ch!='A'&&ch!='Q') ch=getchar();
if(ch=='A')
{
int x;
read(x);
n++;
sum[n]=sum[n-1]^x;
update(root[n],root[n-1],Maxdep,n);
continue;
}
if(ch=='Q')
{
int l,r,x;
read(l),read(r),read(x);
int ans=query(root[r-1],sum[n]^x,Maxdep,l-1);
printf("%d\n",ans);
continue;
}
}
return 0;
}
洛谷P4735题解的更多相关文章
- [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码
[洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...
- Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)
题面 Bzoj 洛谷 题解 显然,如果让你查询整个数列的最大异或和,建一颗\(01Trie\),每给定一个\(p\),按照二进制后反方向跳就行了(比如当前二进制位为\(1\),则往\(0\)跳,反之亦 ...
- 洛谷P5759题解
本文摘自本人洛谷博客,原文章地址:https://www.luogu.com.cn/blog/cjtb666anran/solution-p5759 \[这道题重在理解题意 \] 选手编号依次为: \ ...
- 关于三目运算符与if语句的效率与洛谷P2704题解
题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...
- c++并查集配合STL MAP的实现(洛谷P2814题解)
不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...
- 洛谷P2607题解
想要深入学习树形DP,请点击我的博客. 本题的DP模型同 P1352 没有上司的舞会.本题的难点在于如何把基环树DP转化为普通的树上DP. 考虑断边和换根.先找到其中的一个环,在上面随意取两个点, 断 ...
- 【题解】洛谷P4735最大异或和
学习了一下可持久化trie的有关姿势~其实还挺好理解的,代码也短小精悍.重点在于查询某个历史版本的trie树上的某条边是否存在,同样我们转化到维护前缀和来实现.同可持久化线段树一样,我们为了节省空间继 ...
- 【洛谷P4735】最大异或和
题目大意:给定一个长度为 N 的序列,支持两个操作:在序列末尾添加一个新的数字,查询序列区间 \([l,r]\) 内使得 \(a_p\oplus a_{q+1}\oplus ... a_N\oplus ...
- 【洛谷】题解 P1056 【排座椅】
题目链接 因为题目说输入保证会交头接耳的同学前后相邻或者左右相邻,所以一对同学要分开有且只有一条唯一的通道才能把他们分开. 于是可以吧这条通道累加到一个数组里面.应为题目要求纵列的通道和横列的通道条数 ...
随机推荐
- c# 基本类型存储方式的研究
基本单位 二进制,当前的计算机系统使用的基本上是二进制系统.二进制的单位是位,每一位可以表示2个数: 0或1.byte(字节) 有8位,可以表示的数为2的8次方,即256个数,范围为[0-255]. ...
- person类与其子类在使用中的内存情况(含java的改写和c#的屏蔽)
JAVA 普通person类及调用代码: public class Person { public String xm; public int nl; public void setme(String ...
- http的GET方法参数中不能传列表,接收端的key会变
如下 async initTable() { await getHostAttributesForUser({'username': this.username}).then(response =&g ...
- Mybatis源码解析(二) —— 加载 Configuration
Mybatis源码解析(二) -- 加载 Configuration 正如上文所看到的 Configuration 对象保存了所有Mybatis的配置信息,也就是说mybatis-config. ...
- window 10 npm install node-sass报错
最近准备想用vue-cli初始化一个项目,需要sass-loader编译: 发现window下npm install node-sass和sass-loader一直报错, window 命令行中提示我 ...
- RxJS——订阅(Subscription)
订阅(Subscription) 什么是订阅?订阅是一个对象,它表示一个处理完就释放(disposable)的资源,是 Observable 的一个执行程序.订阅有一个很重要的方法,unsubscri ...
- JanusGraph安装graphexp
准备:JanusGraph环境,graphexp源码,nginx 本文采用的环境:JanusGraph + cassandra + ES + GraphExp(cassandra 或者HBase作为后 ...
- ThinkCMF_X1.6.0-X2.2.3框架任意内容包含漏洞的简单分析复现(附自动化验证脚本)
1.漏洞概述 攻击者可利用此漏洞构造恶意的url,向服务器写入任意内容的文件,达到远程代码执行的目的 2.影响版本 ThinkCMF X1.6.0 ThinkCMF X2.1.0 ThinkCMF X ...
- The Preliminary Contest for ICPC Asia Nanjing 2019 H. Holy Grail
题目链接:https://nanti.jisuanke.com/t/41305 题目说的很明白...只需要反向跑spfa然后输入-dis,然后添-dis的一条边就好了... #include < ...
- Element布局实现日历布局
1.基于Bootstrap的栅格布局 <div id="home" style="margin-top: 60px;"> <div class ...