「UNR#1」奇怪的线段树
「UNR#1」奇怪的线段树
一道好题,感觉解法非常自然。
首先我们只需要考虑一次染色最下面被包含的那些区间,因为把无解判掉以后只要染了一个节点,它的祖先也一定被染了。然后发现一次染色最下面的那些区间一定是一段连续的左儿子+一段连续的右儿子。
证明的话可以看官方题解,感性理解的话不难,同时,任意一段连续的左儿子+右儿子也对应一个区间。定义一个左儿子区间 \([l_i,r_i]\) 的后继是所有 \(r_i=l_i+1\) 的左儿子和右儿子,一个右儿子区间 \([l_i,r_i]\) 的后继是所有 \(r_i=l_i+1\) 的右儿子区间,不难发现这是一个DAG。那么这张图的一条路径就对应了原图的一个染色区间,也就是要求这个DAG的最小路径覆盖,优化建图+上下界最小流即可。
code
/*program by mangoyang*/
#include <bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 200005, M = 200005;
int L[N], R[N], col[N], low[N], isl[N], n, NS, NT, cnt = 1;
inline void init(int u, int l, int r){
L[u] = l, R[u] = r;
if(l == r)
return (void) (read(col[u]), low[u] = col[u]);
int mid, lc, rc;
read(col[u]), read(mid);
init(lc = ++cnt, l, mid), init(rc = ++cnt, mid + 1, r);
isl[lc] = 1;
if(!col[u] && (col[lc] || col[rc])){
puts("OwO"); exit(0);
}
low[u] = col[u] && (!col[lc]) && (!col[rc]);
}
namespace flow{
queue<int> q;
int a[M], cap[M], nxt[M], head[N], cur[N], dis[N], S, T, cnt = 1;
inline void addedge(int x, int y, int z){
a[++cnt] = y, cap[cnt] = z, nxt[cnt] = head[x], head[x] = cnt;
a[++cnt] = x, cap[cnt] = 0, nxt[cnt] = head[y], head[y] = cnt;
}
inline int bfs(){
memset(dis, -1, sizeof(dis)), dis[S] = 0, q.push(S);
for(; !q.empty(); q.pop()){
int u = q.front();
for(int p = head[u]; p; p = nxt[p]){
int v = a[p];
if(~dis[v] || !cap[p]) continue;
dis[v] = dis[u] + 1, q.push(v);
}
}
return ~dis[T];
}
inline int dfs(int u, int flow){
if(u == T || !flow) return flow;
int used = 0;
for(int &p = cur[u]; p; p = nxt[p]){
int v = a[p];
if(dis[v] != dis[u] + 1 || !cap[p]) continue;
int x = dfs(v, min(flow, cap[p]));
used += x, flow -= x, cap[p] -= x, cap[p^1] += x;
if(!flow) break;
}
return used;
}
inline void setflow(int x, int y){ S = x, T = y; }
inline int getflow(){
int res = 0;
for(; bfs(); res += dfs(S, inf))
memcpy(cur, head, sizeof(cur));
return res;
}
}
inline void addedge(int x, int y, int a, int b){
flow::addedge(NS, y, a);
flow::addedge(x, NT, a);
flow::addedge(x, y, b - a);
}
int main(){
read(n);
init(1, 1, n);
int S = n * 6 + 1, T = S + 1;
NS = T + 1, NT = NS + 1;
for(int i = 1; i < (n << 1); i++) if(col[i]){
addedge(i, i + (n << 1), low[i], inf);
addedge(L[i] + (n << 2), i, 0, inf);
addedge(i + (n << 1), T, 0, inf);
addedge(S, i, 0, inf);
if(isl[i]){
if(R[i] < n)
addedge(i + (n << 1), R[i] + 1 + (n << 2) + n, 0, inf);
addedge(L[i] + (n << 2) + n, i, 0, inf);
}
else if(R[i] < n)
addedge(i + (n << 1), R[i] + 1 + (n << 2), 0, inf);
}
flow::setflow(NS, NT);
flow::getflow();
flow::addedge(T, S, inf);
cout << flow::getflow() << endl;
return 0;
}
「UNR#1」奇怪的线段树的更多相关文章
- loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增
题意:给你一个子串,m次询问,每次给你abcd,问你子串sa-b的所有子串和子串sc-d的最长公共前缀是多长 题解:首先要求两个子串的最长公共前缀就是把反过来插入变成最长公共后缀,两个节点在paren ...
- LOJ 2980 「THUSCH 2017」大魔法师——线段树
题目:https://loj.ac/problem/2980 线段树维护矩阵. 然后是 30 分.似乎是被卡常了?…… #include<cstdio> #include<cstri ...
- [UOJ] #217. 【UNR #1】奇怪的线段树
题解见大佬博客 我的丑陋代码: #include<cstdio> #include<cstring> #include<cstdlib> inline int re ...
- 「CQOI2006」简单题 线段树
「CQOI2006」简单题 线段树 水.区间修改,单点查询.用线段树维护区间\([L,R]\)内的所有\(1\)的个数,懒标记表示为当前区间是否需要反转(相对于区间当前状态),下方标记时懒标记取反即可 ...
- 「AHOI2014/JSOI2014」奇怪的计算器
「AHOI2014/JSOI2014」奇怪的计算器 传送门 我拿到这题首先是懵b的,因为感觉没有任何性质... 后来经过同机房dalao的指导发现可以把所有的 \(X\) 放到一起排序,然后我们可以发 ...
- #3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...
- 「UNR#2」黎明前的巧克力
「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...
- [UOJ UNR#1]奇怪的线段树
来自FallDream的博客,未经允许,请勿转载, 谢谢. 原题可以到UOJ看,传送门 如果存在一个点是白的,却有儿子是黑的,显然无解. 不然的话,只要所有黑色的“黑叶子”节点,即没有黑色的儿子的节点 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
随机推荐
- ECharts将折线变平滑和去掉点的属性(转载)曲线变圆滑
本文链接:https://blog.csdn.net/sinat_36422236/article/details/62430114 series : [ { name:'your name', sy ...
- Django框架(八)--单表增删改查,在Python脚本中调用Django环境
一.数据库连接配置 如果连接的是pycharm默认的Sqlite,不用改动,使用默认配置即可 如果连接mysql,需要在配置文件中的setting中进行配置: 将DATABASES={} 更新为 DA ...
- Linux文件增删改
Linux目录/文件增删改 创建文件 (1) # touch <文件名称> (2) 花括号展开 touch /root/{1,3,9}.txt touch /root/{0..100}. ...
- ansible自动化运维03
ansible自动化运维常用模块 常用模块实现的功能:安装软件包:修改配置文件:创建程序用户组:创建目录,并修改所属和权限:挂载:启动服务:测试. command模块: shell模块: 注意:com ...
- idea下新建Spring Boot项目并配置启动
一.操作步骤 ①使用idea新建一个Spring Boot项目 ②修改pom.xml ③修改application.properties ④修改编写一个Hello Spring Boot的Contro ...
- pointnet
无序性:虽然输入的点云是有顺序的,但是显然这个顺序不应当影响结果.点之间的交互:每个点不是独立的,而是与其周围的一些点共同蕴含了一些信息,因而模型应当能够抓住局部的结构和局部之间的交互.变换不变性:比 ...
- matlab-画地形图
1.画三维图 之前画曲面的三维图,运用z=x2+y2 算出z和Z,如果是给出数据的地形则没办法用公式算,为此,引入插值自动造出地形的坐标. 拟合和插值的区别:插值是必须要过点,曲线可以不光滑:拟合则是 ...
- 初识PIXI.js
由于项目需要接触到PIXI这个框架,故开始了一顿打头操作 由于目前PIXI的文档还是很少,而且大多数是英文文档这里提供几个PIXI的demo和文档 demo: http://47.99.120.179 ...
- [RN] Android 设备adb连接后unauthorized解决方法
Android 设备adb连接后unauthorized解决方法 安卓设备usb或者adbwireless连接后输入adb device后都是未授权状态 相信很多同学都会遇到这种情况,除了一直重复开关 ...
- NOIP2019翻车前写(and 抄)过的代码
咕咕咕.按上传时间升序排列. //树的重心 void dfs(int x) { v[x]=1; size[x]=1; int max_part=0; for(int i=hed[x];i;i=nxt[ ...