「UNR#1」奇怪的线段树
「UNR#1」奇怪的线段树
一道好题,感觉解法非常自然。
首先我们只需要考虑一次染色最下面被包含的那些区间,因为把无解判掉以后只要染了一个节点,它的祖先也一定被染了。然后发现一次染色最下面的那些区间一定是一段连续的左儿子+一段连续的右儿子。
证明的话可以看官方题解,感性理解的话不难,同时,任意一段连续的左儿子+右儿子也对应一个区间。定义一个左儿子区间 \([l_i,r_i]\) 的后继是所有 \(r_i=l_i+1\) 的左儿子和右儿子,一个右儿子区间 \([l_i,r_i]\) 的后继是所有 \(r_i=l_i+1\) 的右儿子区间,不难发现这是一个DAG。那么这张图的一条路径就对应了原图的一个染色区间,也就是要求这个DAG的最小路径覆盖,优化建图+上下界最小流即可。
code
/*program by mangoyang*/
#include <bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 200005, M = 200005;
int L[N], R[N], col[N], low[N], isl[N], n, NS, NT, cnt = 1;
inline void init(int u, int l, int r){
L[u] = l, R[u] = r;
if(l == r)
return (void) (read(col[u]), low[u] = col[u]);
int mid, lc, rc;
read(col[u]), read(mid);
init(lc = ++cnt, l, mid), init(rc = ++cnt, mid + 1, r);
isl[lc] = 1;
if(!col[u] && (col[lc] || col[rc])){
puts("OwO"); exit(0);
}
low[u] = col[u] && (!col[lc]) && (!col[rc]);
}
namespace flow{
queue<int> q;
int a[M], cap[M], nxt[M], head[N], cur[N], dis[N], S, T, cnt = 1;
inline void addedge(int x, int y, int z){
a[++cnt] = y, cap[cnt] = z, nxt[cnt] = head[x], head[x] = cnt;
a[++cnt] = x, cap[cnt] = 0, nxt[cnt] = head[y], head[y] = cnt;
}
inline int bfs(){
memset(dis, -1, sizeof(dis)), dis[S] = 0, q.push(S);
for(; !q.empty(); q.pop()){
int u = q.front();
for(int p = head[u]; p; p = nxt[p]){
int v = a[p];
if(~dis[v] || !cap[p]) continue;
dis[v] = dis[u] + 1, q.push(v);
}
}
return ~dis[T];
}
inline int dfs(int u, int flow){
if(u == T || !flow) return flow;
int used = 0;
for(int &p = cur[u]; p; p = nxt[p]){
int v = a[p];
if(dis[v] != dis[u] + 1 || !cap[p]) continue;
int x = dfs(v, min(flow, cap[p]));
used += x, flow -= x, cap[p] -= x, cap[p^1] += x;
if(!flow) break;
}
return used;
}
inline void setflow(int x, int y){ S = x, T = y; }
inline int getflow(){
int res = 0;
for(; bfs(); res += dfs(S, inf))
memcpy(cur, head, sizeof(cur));
return res;
}
}
inline void addedge(int x, int y, int a, int b){
flow::addedge(NS, y, a);
flow::addedge(x, NT, a);
flow::addedge(x, y, b - a);
}
int main(){
read(n);
init(1, 1, n);
int S = n * 6 + 1, T = S + 1;
NS = T + 1, NT = NS + 1;
for(int i = 1; i < (n << 1); i++) if(col[i]){
addedge(i, i + (n << 1), low[i], inf);
addedge(L[i] + (n << 2), i, 0, inf);
addedge(i + (n << 1), T, 0, inf);
addedge(S, i, 0, inf);
if(isl[i]){
if(R[i] < n)
addedge(i + (n << 1), R[i] + 1 + (n << 2) + n, 0, inf);
addedge(L[i] + (n << 2) + n, i, 0, inf);
}
else if(R[i] < n)
addedge(i + (n << 1), R[i] + 1 + (n << 2), 0, inf);
}
flow::setflow(NS, NT);
flow::getflow();
flow::addedge(T, S, inf);
cout << flow::getflow() << endl;
return 0;
}
「UNR#1」奇怪的线段树的更多相关文章
- loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增
题意:给你一个子串,m次询问,每次给你abcd,问你子串sa-b的所有子串和子串sc-d的最长公共前缀是多长 题解:首先要求两个子串的最长公共前缀就是把反过来插入变成最长公共后缀,两个节点在paren ...
- LOJ 2980 「THUSCH 2017」大魔法师——线段树
题目:https://loj.ac/problem/2980 线段树维护矩阵. 然后是 30 分.似乎是被卡常了?…… #include<cstdio> #include<cstri ...
- [UOJ] #217. 【UNR #1】奇怪的线段树
题解见大佬博客 我的丑陋代码: #include<cstdio> #include<cstring> #include<cstdlib> inline int re ...
- 「CQOI2006」简单题 线段树
「CQOI2006」简单题 线段树 水.区间修改,单点查询.用线段树维护区间\([L,R]\)内的所有\(1\)的个数,懒标记表示为当前区间是否需要反转(相对于区间当前状态),下方标记时懒标记取反即可 ...
- 「AHOI2014/JSOI2014」奇怪的计算器
「AHOI2014/JSOI2014」奇怪的计算器 传送门 我拿到这题首先是懵b的,因为感觉没有任何性质... 后来经过同机房dalao的指导发现可以把所有的 \(X\) 放到一起排序,然后我们可以发 ...
- #3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...
- 「UNR#2」黎明前的巧克力
「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...
- [UOJ UNR#1]奇怪的线段树
来自FallDream的博客,未经允许,请勿转载, 谢谢. 原题可以到UOJ看,传送门 如果存在一个点是白的,却有儿子是黑的,显然无解. 不然的话,只要所有黑色的“黑叶子”节点,即没有黑色的儿子的节点 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
随机推荐
- vue+element拖动排序功能
项目中老大心血来潮设计了一可以拖动达到排序的功能,感觉没什么用,但是没办法,实现吧! 这功能肯定不会手撸了,直接上插件 使用Sortable.js,对vue不友好,拖拽有时候乱跳;改用vuedragg ...
- CRM产品主数据在行业解决方案industry solution中的应用
AG3, choose this role: Create a new Acquisition Contracts: Here our product advances search will be ...
- SAP云平台和第三方CRM解决方案(火锅)互联
光看封面配图,这篇文章很容易被误认为在讲成都的美食之一:火锅. SAP成都研究院坐落在被联合国教科文组织授予过"美食之都"称号的成都,所在的天府软件园,半径1公里左右星罗棋布着很多 ...
- clickjacking 攻击
文章:Web安全之点击劫持(ClickJacking) 点击劫持(ClickJacking)是一种视觉上的欺骗手段.大概有两种方式,一是攻击者使用一个透明的iframe,覆盖在一个网页上,然后诱使用户 ...
- centos virtualbox虚拟机无法连接外网
各种方法都试了,不好使. 最后重启了很多次,最后一次成功了... ----详情---- 发生的原因是因为突然断电导致的异常. 先通过systemctl restart network 来启动,结果报错 ...
- q1095
一,写题 1,我这个递归的错误我挺想搞出来的 int fa(int x) { ) return cnt; ==) { x=x/; cout<<"测试1:"<< ...
- Debian9 安装软件汇总
dpkg dpkg -i 安装本地安装包 echo 'pkgname newstat' | dpkg --set-selections 修改软件包安装状态 newstat install,deinst ...
- innerHTML, innerText, outerHTML, outerText的区别
innerHTML:返回标签内部嵌套的子元素的所有html标签+文本内容content. innerText:返回标签内部嵌套的子元素的文本内容content. outerHTML:返回标签本身+嵌套 ...
- 【贪心】【P5521】[yLOI2019] 梅深不见冬
B [yLOI2019] 梅深不见冬 Background 风,吹起梅岭的深冬:霜,如惊涛一样汹涌:雪,飘落后把所有烧成空, 像这场,捕捉不到的梦. 醒来时已是多年之久,宫门铜环才长了铁锈, 也开始生 ...
- Educational Round 66 题解
作为橙名来水了一发…… 这次题目就比上次良心多了.7题有5题会做. 然而风格仍然很怪异……还是练少了? A 水题.不过一开始没注意细节挂了几发,罚时罚的真痛…… 明显是能除以 $k$ 就除以 $k$, ...