NOIP2002矩形覆盖[几何DFS]
题目描述
在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。

这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。
输入输出格式
输入格式:
n k xl y1 x2 y2 ... ...
xn yn (0<=xi,yi<=500)
输出格式:
输出至屏幕。格式为:
一个整数,即满足条件的最小的矩形面积之和。
输入输出样例
4 2
1 1
2 2
3 6
0 7
4
-------------------------------------------------------------------------------
看上去好吓人----然而与计算几何基本无关
DFS每个点,枚举矩形来覆盖那个点,搜完点更新答案
别忘要一个矩形覆盖一点dfs后把矩形改回原来的状态
就是那些几何运算的函数写的有点多
并且naocan的犯了一个沙茶问题,竟然这样写判断:lx<=x<=rx
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int N=,INF=1e9;
struct point{
int x,y;
point(int a=,int b=):x(a),y(b){}
}p[N];
struct squ{
int lx,ly,rx,ry;
squ():lx(),rx(),ly(),ry(){}
}s[N];
int n,k,ans=INF;
inline bool isCover(int x,int y,int i){
if(s[i].lx<=x&&x<=s[i].rx && s[i].ly<=y&&y<=s[i].ry) return true;
return false;
}
bool checkSqu(int i,int j){
squ a=s[i],b=s[j];
//if(a.lx==INF || b.lx==INF) return false;
if(isCover(a.lx,a.ly,j)) return false;
if(isCover(a.lx,a.ry,j)) return false;
if(isCover(a.rx,a.ly,j)) return false;
if(isCover(a.rx,a.ry,j)) return false;
swap(a,b);swap(i,j);
if(isCover(a.lx,a.ly,j)) return false;
if(isCover(a.lx,a.ry,j)) return false;
if(isCover(a.rx,a.ly,j)) return false;
if(isCover(a.rx,a.ry,j)) return false;
return true;
}
bool check(){
for(int i=;i<=k;i++)
for(int j=;j<=k;j++){
if(i==j) continue;
if(s[i].lx==INF||s[j].lx==INF) continue;
if(!checkSqu(i,j)) return false;
}
return true;
}
int getS(){
int sum=;
for(int i=;i<=k;i++){
squ &now=s[i];
if(now.lx==INF) continue;
sum+=(now.rx-now.lx)*(now.ry-now.ly);
}
return sum;
}
void cover(point p,int i){
squ &a=s[i];
if(a.lx>p.x) a.lx=p.x;
if(a.ly>p.y) a.ly=p.y;
if(a.rx<p.x) a.rx=p.x;
if(a.ry<p.y) a.ry=p.y;
//printf("cover%d %d %d %d %d\n",i,s[i].lx,s[i].ly,s[i].rx,s[i].ry);
}
void dfs(int now){ //cout<<now<<" now\n";
if(now==n+){ //cout<<getS()<<" s\n";
ans=min(ans,getS());
return;
}
if(getS()>=ans) return;
for(int i=;i<=k;i++){
squ tmp=s[i];//printf("hi%d %d %d %d %d\n",i,s[i].lx,s[i].ly,s[i].rx,s[i].ry);
cover(p[now],i);
if(check()) dfs(now+);
s[i]=tmp; //printf("tmp%d %d %d %d %d\n",i,s[i].lx,s[i].ly,s[i].rx,s[i].ry);
}
//cout<<now<<" end\n";
}
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%d%d",&p[i].y,&p[i].x);//daozhe
}
for(int i=;i<=k;i++){
s[i].lx=s[i].ly=INF;
s[i].rx=s[i].ry=-INF;
}
dfs();
cout<<ans;
}
NOIP2002矩形覆盖[几何DFS]的更多相关文章
- [LuoguP1034][Noip2002] 矩形覆盖
[LuoguP1034][Noip2002] 矩形覆盖(Link) 在平面上有\(N\)个点,\(N\)不超过五十, 要求将这\(N\)个点用\(K\)个矩形覆盖,\(k\)不超过\(4\),要求最小 ...
- NOIP2002 矩形覆盖
题四 矩形覆盖(存盘名NOIPG4) [问题描述]: 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2), ...
- COGS103&tyvj1899 [NOIP2002]矩形覆盖
题目里给的范围是k<=4,但是官方数据并没有k==4的情况,导致一些奇奇怪怪的DP写法也能过.听说标程在k==4的时候有反例,掀桌-.. 难怪COGS上k==4的数据答案是错的. 还是好好写个搜 ...
- 洛谷1034 NOIP2002 矩形覆盖
问题描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7). 这些点可以 ...
- 洛谷P1034 矩形覆盖
P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4( ...
- 洛谷 P1034 矩形覆盖
P1034 矩形覆盖 题目描述 在平面上有nn个点(n \le 50n≤50),每个点用一对整数坐标表示.例如:当 n=4n=4 时,44个点的坐标分另为:p_1p1(1,11,1),p_2p2( ...
- [luogu1034] 矩形覆盖 (暴力)
传送门 Description 给n(n<=50)个点(x,y),要求用k(1<=k<=4)个没有联系的矩形覆盖住求矩形最小面积 Solution 感觉不是很可做,结果看TJ后发现数 ...
- 【OpenJudge 1793】矩形覆盖
http://noi.openjudge.cn/ch0405/1793/ 好虐的一道题啊. 看数据范围,一眼状压,然后调了好长时间QwQ 很容易想到覆盖的点数作为状态,我用状态i表示至少覆盖状态i表示 ...
- bzoj 1185 旋转卡壳 最小矩形覆盖
题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...
随机推荐
- Vue.js——60分钟快速入门
Vue.js介绍 Vue.js是当下很火的一个JavaScript MVVM库,它是以数据驱动和组件化的思想构建的.相比于Angular.js,Vue.js提供了更加简洁.更易于理解的API,使得我们 ...
- 1:时间戳转换成年月日函数,2:url截取参数方法,3:弹窗自定义方法 4:点击按钮加入购物车
最近一直在使用vue.js来构建项目,先分享一下一些简单可复用的函数. 1:时间戳转换Date.prototype.format = function(fmt){ //author: yumeiqia ...
- swift学习笔记之-方法部分
//方法部分 import UIKit //方法(Methods) /*方法是与某些特定类型相关联的函数,类.结构体.枚举都可以定义实例方法 实例方法(Instance Methods): 1.属于某 ...
- jQuery原型方法.pushStack源码分析
这次分析的方法跟前面不同,虽然pushStack也是原型方法之一,但是我们几乎从不用在页面调用,在参考手册里面也没有这个方法的使用说明,但是这个方法还是非常重要的,在使用很多jQuery的其他方式都会 ...
- NSString和SwiftString的区别和使用场景
当下Swift项目已经越来越多,可能会经常见到 str as NSString 或者 str as String 字符串在这两者之间的来回切换,因为有些操作用OC字符串比较方便,而有些操作则相反,熟 ...
- iOS 学习 - 9.Block 入门
来自李明杰的视频. block 用来保存一段代码 block 的标志:^ block 跟函数很像: 1).可以保存代码 2).有返回值 3). 有形参 temp1:没有返回值.没有形参的 blo ...
- iOS Xcode编译报错问题解决办法汇总
1. 编译出现错误:linker command failed with exit code 1 第一种方法:找到Build settings->Linking->Other Linker ...
- 【转】OpenStack和Docker、ServerLess能不能决定云计算胜负吗?
还记得在十多年前,SaaS鼻祖SalesForce喊出的口号『No Software』吗?SalesForce在这个口号声中开创了SaaS行业,并成为当今市值460亿美元的SaaS之王.今天谈谈『No ...
- php中的cookie用法
cookie和session都可以暂时保存在多个页面中使用的变量,但是它们有本质的差别. cookie存放在客户端浏览器中,session保存在服务器上.它们之间的联系是session ID一般保存在 ...
- ORACLE AWR报告数据的导入导出实践
关于AWR的快照数据可以导出.导入,一直没有亲手实践过.今天动手测试了一下如何导出.导入AWR数据,将AWR的数据从一测试服务器,导入到另外一台测试服务器. SQL> @?/rdbms/admi ...