【BZOJ1010】【HNOI2008】玩具装箱(斜率优化,动态规划)
【BZOJ1010】【HNOI2008】玩具装箱
题面
题目描述
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
输入格式:
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
输出格式:
输出最小费用
输入样例#1:
5 4
3
4
2
1
4
输出样例#1:
1
题解
如果公式看不清到CSDN上看把。。。
CSDN的链接
首先我们很容易想到DP
设f[i]表示当前选择到了第i个玩具,且第i个作为一个容器结束的位置的最小代价
然后很容易的想到了O(n^2)的DP
for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
f[i]=min(f[i],f[j]+sqr(c[i]-c[j]+i-j-1-L));
其中,c为前缀和,sqr为平方
但是,这样做的复杂度太高,显然不能够AC
那么,我们不妨设f[i]从j转移过来,并且还有一个状态k
那么就有:
\]
\]
\]
\]
\]
\]
f[i],T[j]和M很显然是单调的
所以很显然的可以用到了斜率优化啦
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
using namespace std;
#define MAX 50100
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,L,c[MAX];
int s[MAX],h,t;
long long f[MAX],q[MAX],T[MAX];
long long sqr(long long x){return x*x;}
long long count(int x,int y)
{
return ((f[x]+sqr(q[x]))-(f[y]+sqr(q[y])))/(2*(q[x]-q[y]));
}
int main()
{
n=read();L=read();
for(int i=1;i<=n;++i)c[i]=read()+c[i-1];
for(int i=1;i<=n;++i)f[i]=1e18;
/*
for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
f[i]=min(f[i],f[j]+sqr(c[i]-c[j]+i-j-1-L));
*/
//以上内容为O(n^2)的暴力转移
for(int i=1;i<=n;++i)q[i]=c[i]+i;
for(int i=1;i<=n;++i)T[i]=c[i]+i-L-1;
for(int i=1;i<=n;++i)
{
while(h<t&&count(s[h],s[h+1])<=T[i])h++;
int get=s[h];
f[i]=f[get]+sqr(T[i]-q[get]);
while(h<t&&count(s[t-1],s[t])>=count(s[t],i))t--;
s[++t]=i;
}
printf("%lld\n",f[n]);
return 0;
}
【BZOJ1010】【HNOI2008】玩具装箱(斜率优化,动态规划)的更多相关文章
- BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...
- HNOI2008玩具装箱 斜率优化
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- BZOJ 1010 HNOI2008 玩具装箱 斜率优化
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的 ...
- bzoj1010: [HNOI2008]玩具装箱toy(DP+斜率优化)
1010: [HNOI2008]玩具装箱toy 题目:传送门 题解: 很明显的一题动态规划... f[i]表示1~i的最小花费 那么方程也是显而易见的:f[i]=min(f[j]+(sum[i]-su ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- 题解【bzoj1010 [HNOI2008]玩具装箱TOY】
斜率优化动态规划可以用来解决这道题.同时这也是一道经典的斜率优化基础题. 分析:明显是动态规划.令\(dp[i]\)为前\(i\)个装箱的最小花费. 转移方程如下: \[dp[i]=\min\limi ...
- [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...
- BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...
- [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp
玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...
- 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)
传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...
随机推荐
- PHP 5.6 微信上传临时素材的坑
/** * 上传素材 */ function add_material($url){ $access_token = wx_access_token(); $wx_url = "https: ...
- PLECS—模型仿真——第十一周作业
1. 直流电机单闭环调速系统比例控制仿真 (1)整体电路图 (2)控制部分电路图 (3)参数设置+仿真结果 2. 直流电机单闭环调速系统比例积分控制仿真 (1)参数设置 (2)仿真结果 3. 直流电机 ...
- golang GET 出现 x509: certificate signed by unknown authority
我们编写一个Go程序来尝试与这个HTTPS server建立连接并通信. //gohttps/4-https/client1.gopackage main import ( "fmt& ...
- IOS设备设计完整指南
作为初学者,常常不知如何下手设计,IOS应用UI设计中碰到的种种基础小问题,在此都将一一得到解答.这份完整的设计指南将带你快速上手,为IOS设计出优雅的应用吧. 关于此设计指南 此设计指南描述的是如何 ...
- cisco模拟器GNS3和虚拟机VMware的整合
微软和思科环境: 在思科认证的学习中,我们需要用到许多类的模拟器,但这些模拟器并不能够更真实的模拟我们的用户机在应用中所出现的现象.因此,我们借由微软的环境来更真实地体现我们所搭建的网络中的一些应用. ...
- python爬虫循环导入MySql数据库
1.开发环境 操作系统:win10 Python 版本:Python 3.5.2 MySQL:5.5.53 2.用到的模块 没有的话使用pip进行安装:pip install xxx ...
- 自定义JpaUtil,快速完成Hql执行逻辑(一)
这段时间学习Spring Data JPA功能模块.Java持久性API(简称JAP)是类和方法的集合,以海量数据关系映射持久并存储到数据库,这是由Oracle公司提供方案技术.在JAVA社区,深受爱 ...
- 03 JVM的垃圾回收机制
1.前言 理解JVM的垃圾回收机制(简称GC)有什么好处呢?作为一名软件开发者,满足自己的好奇心将是一个很好的理由,不过更重要的是,理解GC工作机制可以帮助你写出更好的Java程序. 在学习GC前,你 ...
- Mysql取随机数据效率测试(400W条中读取100条)
测试数据表的创建在文章:http://www.cnblogs.com/wt645631686/p/6868192.html 先看一下我的SQL方案 SELECT * FROM `emp` WHERE ...
- 动态规划算法的java实现
一:动态规划 1)动态规划的向前处理法 java中没有指针,所以邻接表的存储需要转化一中形式,用数组存储邻接表 用三个数组u,v,w存储边,u数组代表起点,v数组代表终点,w代表权值;例如:1--&g ...