题目描述

监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱

输入输出格式

输入格式:

输入两个整数M,N.1<=M<=10^8,1<=N<=10^12

输出格式:

可能越狱的状态数,模100003取余

输入输出样例

输入样例#1:

2 3
输出样例#1:

6

说明

6种状态为(000)(001)(011)(100)(110)(111)

简单到不像省选题,原本打算用半小时,结果只用了5分钟

所有状态m^n,不符合条件的状态:

第一个有m种选择,接下来n-1个为(m-1)种,所以总数:m*(m-1)^(n-1)

ans=m^n-m*(m-1)^(n-1)

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int p=;
long long ans1,ans2;
long long qpow(long long x,long long m)
{
if (m==) return ;
long long tmp=qpow(x,m/);
tmp=(tmp*tmp)%p;
if (m%==) tmp=(tmp*x)%p;
return tmp;
}
int main()
{long long m,n;
cin>>m>>n;
ans1=qpow(m,n);
ans2=(m*qpow(m-,n-))%p;
cout<<(ans1-ans2+p)%p;
}

[HNOI2008]越狱的更多相关文章

  1. bzoj1008 [HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5099  Solved: 2207 Description 监狱有 ...

  2. 【bzoj1008】[HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7692  Solved: 3296[Submit][Status] ...

  3. BZOJ 1008: [HNOI2008]越狱 快速幂

    1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...

  4. BZOJ 1008 [HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5166  Solved: 2242[Submit][Status] ...

  5. BZOJ1008: [HNOI2008]越狱-快速幂+取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

  6. BZOJ 1008 [HNOI2008]越狱 (简单排列组合 + 快速幂)

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 10503  Solved: 4558[Submit][Status ...

  7. 洛谷 P3197 [HNOI2008]越狱 解题报告

    P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为\(1-N\)的\(N\)个房间,每个房间关押一个犯人,有\(M\)种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可 ...

  8. [HNOI2008]越狱 题解(容斥原理+快速幂)

    [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多 ...

  9. BZOJ 1008 [HNOI2008]越狱 排列组合

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4788  Solved: 2060[Submit][Status] ...

  10. bzoj1008 / P3197 [HNOI2008]越狱

    P3197 [HNOI2008]越狱 考虑所有状况:显然是$m^{n}$ 考虑所有不合法状况: 显然相邻两个数不相等 那么后面$n-1$个数就有$(m-1)^{n-1}$种取法 第一个数前面没有相邻的 ...

随机推荐

  1. Beta冲刺第三天

    一.昨天的困难 没有困难. 二.今天进度 1.林洋洋:修改权限相关的资源表示,修复flex布局排版高度问题,修复文件更新问题,去除登录页面的默认账号密码,服务器部署. 2.黄腾达:修复日程首次执行时间 ...

  2. MariaDB/MySQL存储过程和函数

    本文目录:1.创建存储过程.函数 1.1 存储过程的IN.OUT和INOUT2.修改和删除存储过程.函数3.查看存储过程.函数信息 在MySQL/MariaDB中,存储过程(stored proced ...

  3. bootstrap的ajax提交

    一般后台界面都用bootstrap框架,这是一个css框架,里面封装了ajax方法,只需要在样式中指定就行,根本自己不用写 <td> <eq name='item.status' v ...

  4. php的开发的apache的配置及伪静态的应用

    1.Apache之所以能够解析php代码是游览器首先发送数据到模版页面,然后模版页提交数据到php页面,然后php代码经过Apache解析过后生成结果的,所以是 在Apache的配置文件中是可以看到开 ...

  5. PCB名詞解釋:通孔、盲孔、埋孔(转载)

    文章转载自:https://www.researchmfg.com/2011/07/pth-blind-hole-buried-hole/ PCB名詞解釋:通孔.盲孔.埋孔 Posted by 工作熊 ...

  6. win-zabbix_agent端配置解析

    Zabbix agent 在windows上安装部署 部署windows服务器需要在agent服务器上添加到10.4.200.2的路由 蓝泰服务器需要添加10.0.90.5的网关,联通的机器需要添加到 ...

  7. SpringCloud的部署模型

    http://www.th7.cn/Program/java/201608/919853.shtml

  8. spring-oauth-server实践:授权方式三:PASSWORD模式下 authorities:ROLE_{user.privillege}, ROLE_USER

    一.数据库配置 1.oauth_client_details 2.user_ 3.user_privillege 二.password模式 授权过程 1.授权者granter和请求参数 Resourc ...

  9. Window7系统下安装jdk

    根据电脑的操作系统下载相对于的jdk版本(32位或64位),我安装的是:java_jdk1.7 [计算机]——[属性]——[高级系统设置]——高级——[环境变量] 系统变量——>新建JAVA_H ...

  10. WPF项目学习.四

    信息收录项目 版权声明:本文为博主初学经验,未经博主允许不得转载. 一.前言 记录在学习与制作WPF过程中遇到的解决方案.  需求文案.设计思路.简要数据库结构.简要流程图和明细代码,动图细化每步操作 ...