Pick-up sticks
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 11884   Accepted: 4499

Description

Stan has n sticks of various length. He throws them one at a time on the floor in a random way. After finishing throwing, Stan tries to find the top sticks, that is these sticks such that there is no stick on top of them. Stan has noticed that the last thrown stick is always on top but he wants to know all the sticks that are on top. Stan sticks are very, very thin such that their thickness can be neglected.

Input

Input consists of a number of cases. The data for each case start with 1 <= n <= 100000, the number of sticks for this case. The following n lines contain four numbers each, these numbers are the planar coordinates of the endpoints of one stick. The sticks are listed in the order in which Stan has thrown them. You may assume that there are no more than 1000 top sticks. The input is ended by the case with n=0. This case should not be processed.

Output

For each input case, print one line of output listing the top sticks in the format given in the sample. The top sticks should be listed in order in which they were thrown.

The picture to the right below illustrates the first case from input.

Sample Input

5
1 1 4 2
2 3 3 1
1 -2.0 8 4
1 4 8 2
3 3 6 -2.0
3
0 0 1 1
1 0 2 1
2 0 3 1
0

Sample Output

Top sticks: 2, 4, 5.
Top sticks: 1, 2, 3.
/*
poj 2653 线段与线段相交 判断当前线段后面的线段是否与它相交即可 hhh-2016-05-04 22:10:50
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
const int maxn = 200000;
double eps = 1e-8;
int tot;
int n,m;
double x1,x2,y1,y2,x3,x4,y3,y4; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(int _x,int _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
int operator &(const Line&b)const
{
if( sgn((s-t) ^ (b.s-b.t)) == 0) //通过叉积判断
{
return 0;
}
return 1;
}
}; bool inter(Line l1,Line l2)
{
return
max(l1.s.x,l1.t.x) >= min(l2.s.x,l2.t.x) &&
max(l2.s.x,l2.t.x) >= min(l1.s.x,l1.t.x) &&
max(l1.s.y,l1.t.y) >= min(l2.s.y,l2.t.y) &&
max(l2.s.y,l2.t.y) >= min(l1.s.y,l1.t.y) &&
sgn((l2.s-l1.s)^(l1.t-l1.s))*sgn((l2.t-l1.s)^(l1.t-l1.s)) <= 0 &&
sgn((l1.s-l2.s)^(l2.t-l2.s))*sgn((l1.t-l2.s)^(l2.t-l2.s)) <= 0;
} int tans[maxn];
Line line[maxn]; int main()
{
while(scanf("%d",&n) && n)
{
memset(tans,1,sizeof(tans)); for(int i = 0; i < n; i++)
{
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
line[i] = Line(Point(x1,y1),Point(x2,y2));
}
int num = n;
for(int i = 0; i < n; i++)
{
for(int j = i+1; j < n; j++)
{
if(inter(line[i],line[j]))
{
tans[i] = 0;
num--;
break;
}
}
}
int cur = 0;
printf("Top sticks: ");
for(int i = 0; i < n; i++)
{
if(tans[i])
{
cur++;
if(num == cur)
printf("%d.\n",i+1);
else
printf("%d, ",i+1);
}
}
}
return 0;
}

  

poj 2653 线段与线段相交的更多相关文章

  1. POJ - 2653 - Pick-up sticks 线段与线段相交

    判断线段与线段相交 莫名其妙的数据量 #include <iostream> #include <cstdio> #include <vector> #includ ...

  2. POJ 2653 Pick-up sticks(线段相交)

    题意:给定n个木棍依次放下,要求最终判断没被覆盖的木棍是哪些. 思路:快速排斥以及跨立实验可以判断线段相交. #include<algorithm> #include<cstdio& ...

  3. POJ 2653 Pick-up sticks [线段相交 迷之暴力]

    Pick-up sticks Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 12861   Accepted: 4847 D ...

  4. 线段相交 POJ 2653

    // 线段相交 POJ 2653 // 思路:数据比较水,据说n^2也可以过 // 我是每次枚举线段,和最上面的线段比较 // O(n*m) // #include <bits/stdc++.h ...

  5. POJ 2653 - Pick-up sticks - [枚举+判断线段相交]

    题目链接:http://poj.org/problem?id=2653 Time Limit: 3000MS Memory Limit: 65536K Description Stan has n s ...

  6. 线段和矩形相交 POJ 1410

    // 线段和矩形相交 POJ 1410 // #include <bits/stdc++.h> #include <iostream> #include <cstdio& ...

  7. 判断线段和直线相交 POJ 3304

    // 判断线段和直线相交 POJ 3304 // 思路: // 如果存在一条直线和所有线段相交,那么平移该直线一定可以经过线段上任意两个点,并且和所有线段相交. #include <cstdio ...

  8. poj 1269 线段与线段相交

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13605   Accepted: 60 ...

  9. POJ 1039 Pipe【经典线段与直线相交】

    链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

随机推荐

  1. Linux 复习

    shift + control + +  终端窗口放大 control + -   终端窗口缩小 ls -alh > laowang.txt 重定向,并覆盖源文件内容 ls -alh >& ...

  2. 乐动力APP案例

    第一部分 调研, 评测 下载软件并使用起来,描述最简单直观的个人第一次上手体验. 这款软件的主界面功能还是比较完善,里面有多个关于运动相关的数据,还有一些推荐健身教程,记录功能也十分不错,其中最难理解 ...

  3. python的模块和包

    ==模块== python语言的组织结构层次: 包->模块->代码文件->类->函数->代码块 什么是模块呢 可以把模块理解为一个代码文件的封装,这是比类更高一级的封装层 ...

  4. @SpringBootApplication 组合注解包含哪些注解及作用

    序:在学习springboot,教程一般对一些注解语焉不详,发现@SpringBootApplication 这个注解包含了很多注解,也就是说使用这个注解可以少写几个注解,这里看源码粘出来一些,仅用于 ...

  5. 分布式版本控制系统Git的安装及使用

    Git的安装分为客户端安装和服务端安装,鉴于我平时码代码在windows环境下,因此本文客户端安装直接在windows环境,服务端安装在linux环境下(centos). Git客户端安装 客户端下载 ...

  6. WebApi 的三种寄宿方式 (一)

    最近逛博客园,看到了Owin,学习了一下,做个笔记,说不定将来哪天就用上了 关于 Owin 的介绍,百度解释的很清楚了: https://baike.baidu.com/item/owin/28607 ...

  7. 深入了解GOT,PLT和动态链接

    之前几篇介绍exploit的文章, 有提到return-to-plt的技术. 当时只简单介绍了 GOT和PLT表的基本作用和他们之间的关系, 所以今天就来详细分析下其具体的工作过程. 本文所用的依然是 ...

  8. GIT入门笔记(5)- 创建版本库

    版本库又名仓库,英文名repository,可以简单理解成一个目录, 这个目录里面的所有文件都可以被Git管理起来,每个文件的修改.删除,Git都能跟踪,以便任何时刻都可以追踪历史,或者在将来某个时刻 ...

  9. Groovy入门(2-2)Groovy的eclipse插件安装

    1.安装eclipse插件 启动eclipse,点击help -> Install New Software... 在弹出的窗口中点击:Add... Groovy插件的地址:http://dis ...

  10. Python模块 - paramiko

    paramiko模块提供了ssh及sft进行远程登录服务器执行命令和上传下载文件的功能.这是一个第三方的软件包,使用之前需要安装. 1 基于用户名和密码的 sshclient 方式登录 # 建立一个s ...