图论之强连通复习开始- -

题目大意:给你一个有向图,要你求出这样的点集:从这个点出发能到达的点,一定能回到这个点

思路:强连通分量里的显然都可以互相到达 那就一起考虑,缩点后如果一个点有出边,一定不在点集内,因为缩点后是DAG,无环,因此一定不能回到原来的点,所以找到出度为0的点即可

#include<cstdio>

#include<string.h>

#include<math.h>

#include<algorithm>

#include<iostream>

#include<queue>

#define maxn 90000

#define inf 0x3f3f3f3f

using namespace std;

int head[maxn],next[maxn],point[maxn],now=0;

int dfn[maxn],low[maxn],time,col,stack[maxn];

int top,belong[maxn],out[maxn];

bool instack[maxn];

void add(int x,int y)

{

next[++now]=head[x];

head[x]=now;

point[now]=y;

}

void tarjan(int k)

{

int u;

dfn[k]=low[k]=++time;

instack[k]=1;

stack[++top]=k;

for(int i=head[k];i;i=next[i])

{

u=point[i];

if(dfn[u]==0)

{

tarjan(u);

low[k]=min(low[u],low[k]);

}

else if(instack[u])low[k]=min(low[k],low[u]);

}

if(low[k]==dfn[k])

{

++col;

do

{

u=stack[top--];

instack[u]=0;

belong[u]=col;

}while(u!=k);

}

}

int main()

{

int n,m,x,y;

while(1)

{

scanf("%d",&n);

if(n==0)break;

scanf("%d",&m);

now=0;memset(head,0,sizeof(head));

top=0;memset(instack,0,sizeof(instack));

memset(out,0,sizeof(out));

memset(dfn,0,sizeof(dfn));

for(int i=1;i<=m;i++)

{

scanf("%d%d",&x,&y);

add(x,y);

}

for(int i=1;i<=n;i++)if(dfn[i]==0)tarjan(i);

for(int i=1;i<=n;i++)

{

for(int j=head[i];j;j=next[j])

{

int u=point[j];

if(belong[i]!=belong[u])out[belong[i]]++;

}

}

int flag=1;

for(int i=1;i<=n;i++)

{

if(flag && out[belong[i]]==0)

{

printf("%d",i);

flag^=flag;

}

else if(out[belong[i]]==0)printf(" %d",i);

}

printf("\n");

}

return 0;

}

POJ 2553 The Bottom of a Graph 【scc tarjan】的更多相关文章

  1. poj 2553 The Bottom of a Graph【强连通分量求汇点个数】

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9641   Accepted:  ...

  2. POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...

  3. poj 2553 The Bottom of a Graph(强连通分量+缩点)

    题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  4. POJ 2553 The Bottom of a Graph (Tarjan)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11981   Accepted: ...

  5. POJ 2553 The Bottom of a Graph (强连通分量)

    题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假 ...

  6. POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)

    Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...

  7. poj 2553 The Bottom of a Graph : tarjan O(n) 存环中的点

    /** problem: http://poj.org/problem?id=2553 将所有出度为0环中的点排序输出即可. **/ #include<stdio.h> #include& ...

  8. poj - 2186 Popular Cows && poj - 2553 The Bottom of a Graph (强连通)

    http://poj.org/problem?id=2186 给定n头牛,m个关系,每个关系a,b表示a认为b是受欢迎的,但是不代表b认为a是受欢迎的,关系之间还有传递性,假如a->b,b-&g ...

  9. poj 2553 The Bottom of a Graph

    求解的是有向图中满足“自己可达的顶点都能到达自己”的顶点个数如果强连通分量中某个顶点,还能到达分量外的顶点,则该连通分量不满足要求// 因此,本题要求的是将强连通分量缩点后所构造的新图中出度为0的顶点 ...

随机推荐

  1. MongoDB学习笔记~监控Http请求的消息链

    在微服务架构里,你的一个任务可以需要经过多次中转,去多个接口获取数据,而在这个过程中,出现问题后的解决就成了一个大难点,你无法定位它的问题,这时,大叔的分布式消息树就出现了,费话不多说,主要看一下实现 ...

  2. bootstrap CSS表单、按钮和字体图标

    基础表单   <form role="form">     <div class="form-group">         <l ...

  3. [ SNOI 2013 ] Quare

    Description 题目链接 求一张无向带权图的边双连通生成子图的最小代价. Solution 核心的思路是,一个点双连通分量肯定是一堆环的并. 考虑增量地构造这个边双连通图,每次把一个环并进去, ...

  4. Eclipse项目转Android Studio

    刚来某公司的时候,发现Android开发仍然还在使用Eclipse,编码无规范,渠道打包竟然手动,svn版本主干分支管理混乱,总之各种low... 对于有强迫症的我来说,属实不可忍.但无奈,新人一个, ...

  5. Linux常用终端快捷键

    UNIX程序员对键盘以及快捷键的设置都遵循一个标准:"手移动最少的距离,作更多的操作." 所有的类UNIX的终端上都有一些快捷键Ctrl+n = 下,Ctrl+b = 左,Ctrl ...

  6. 解决./mysql-bin.index’ not found (Errcode: 13)

    问题出现在升级php版本以后,网站无法连接数据库,phpMyAdmin无法登录: 然后尝试开启mysql,/etc/init.d/mysqld start ,提示: Starting MySQL. E ...

  7. PMP项目管理学习笔记(9)——范围管理

    关于范围管理的几个名词定义 产品范围:表示你和你的团队正在构建的产品或服务的特性和功能:产品范围与最终产品有关,包括产品的特性,组件和组成部分.人们谈论确定产品的范围时,大多都是在谈论确定产品的特性, ...

  8. 关于maven source1.5报错

    是因为maven 默认是1.5编译的 <build>//加上这个配置,把编译给改掉试试 <pluginManagement> <plugins> <plugi ...

  9. linux centos 中目录结构的含义

    文件夹的含义  文件夹路径 含义  / 所有内容的开始   /root 系统管理员目录  /bin 缺省的liunx工具,就是存储命令的目录   环境变量等等 /etc 系统的配置    配置文件的存 ...

  10. postman对登陆进行压力测试的方法

    1.填写完整参数,设置好变量,选择好环境,保存好 2.将变量mobile_phone和password的值以如下图的格式,填写到Excel表格中,然后以csv(逗号分隔)的形式进行保存 3.点击此测试 ...