图论之强连通复习开始- -

题目大意:给你一个有向图,要你求出这样的点集:从这个点出发能到达的点,一定能回到这个点

思路:强连通分量里的显然都可以互相到达 那就一起考虑,缩点后如果一个点有出边,一定不在点集内,因为缩点后是DAG,无环,因此一定不能回到原来的点,所以找到出度为0的点即可

#include<cstdio>

#include<string.h>

#include<math.h>

#include<algorithm>

#include<iostream>

#include<queue>

#define maxn 90000

#define inf 0x3f3f3f3f

using namespace std;

int head[maxn],next[maxn],point[maxn],now=0;

int dfn[maxn],low[maxn],time,col,stack[maxn];

int top,belong[maxn],out[maxn];

bool instack[maxn];

void add(int x,int y)

{

next[++now]=head[x];

head[x]=now;

point[now]=y;

}

void tarjan(int k)

{

int u;

dfn[k]=low[k]=++time;

instack[k]=1;

stack[++top]=k;

for(int i=head[k];i;i=next[i])

{

u=point[i];

if(dfn[u]==0)

{

tarjan(u);

low[k]=min(low[u],low[k]);

}

else if(instack[u])low[k]=min(low[k],low[u]);

}

if(low[k]==dfn[k])

{

++col;

do

{

u=stack[top--];

instack[u]=0;

belong[u]=col;

}while(u!=k);

}

}

int main()

{

int n,m,x,y;

while(1)

{

scanf("%d",&n);

if(n==0)break;

scanf("%d",&m);

now=0;memset(head,0,sizeof(head));

top=0;memset(instack,0,sizeof(instack));

memset(out,0,sizeof(out));

memset(dfn,0,sizeof(dfn));

for(int i=1;i<=m;i++)

{

scanf("%d%d",&x,&y);

add(x,y);

}

for(int i=1;i<=n;i++)if(dfn[i]==0)tarjan(i);

for(int i=1;i<=n;i++)

{

for(int j=head[i];j;j=next[j])

{

int u=point[j];

if(belong[i]!=belong[u])out[belong[i]]++;

}

}

int flag=1;

for(int i=1;i<=n;i++)

{

if(flag && out[belong[i]]==0)

{

printf("%d",i);

flag^=flag;

}

else if(out[belong[i]]==0)printf(" %d",i);

}

printf("\n");

}

return 0;

}

POJ 2553 The Bottom of a Graph 【scc tarjan】的更多相关文章

  1. poj 2553 The Bottom of a Graph【强连通分量求汇点个数】

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9641   Accepted:  ...

  2. POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...

  3. poj 2553 The Bottom of a Graph(强连通分量+缩点)

    题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  4. POJ 2553 The Bottom of a Graph (Tarjan)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11981   Accepted: ...

  5. POJ 2553 The Bottom of a Graph (强连通分量)

    题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假 ...

  6. POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)

    Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...

  7. poj 2553 The Bottom of a Graph : tarjan O(n) 存环中的点

    /** problem: http://poj.org/problem?id=2553 将所有出度为0环中的点排序输出即可. **/ #include<stdio.h> #include& ...

  8. poj - 2186 Popular Cows && poj - 2553 The Bottom of a Graph (强连通)

    http://poj.org/problem?id=2186 给定n头牛,m个关系,每个关系a,b表示a认为b是受欢迎的,但是不代表b认为a是受欢迎的,关系之间还有传递性,假如a->b,b-&g ...

  9. poj 2553 The Bottom of a Graph

    求解的是有向图中满足“自己可达的顶点都能到达自己”的顶点个数如果强连通分量中某个顶点,还能到达分量外的顶点,则该连通分量不满足要求// 因此,本题要求的是将强连通分量缩点后所构造的新图中出度为0的顶点 ...

随机推荐

  1. Spark MLlib编程API入门系列之特征选择之R模型公式(RFormula)

    不多说,直接上干货! 特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择). RFormula用于将数据中的字段通过R ...

  2. sql注入原理及解决方案

    sql注入原理 sql注入原理就是用户输入动态的构造了意外sql语句,造成了意外结果,是攻击者有机可乘 SQL注入攻击指的是通过构建特殊的输入作为参数传入Web应用程序,而这些输入大都是SQL语法里的 ...

  3. ios MD5大小写加密

    #import "NSString+change.h" #import <CommonCrypto/CommonDigest.h> @implementation NS ...

  4. 【人工智能系列】python的Quepy库的学习

    第一篇 了解 什么是Quepy quepy是一个Python框架改造自然语言问题在数据库查询语言查询.它可以很容易地定制不同类型的问题,在自然语言和数据库查询.因此,用很少的代码,你可以建立自己的系统 ...

  5. raid 0 1 5 10 总结的知识点

    raid 0 1 5 10 raid 发的别名条带 raid 0 读取性能最高需要磁盘2*N个(N>0)代表所有raid级别中的最高存储性能,其实原理就是把连续的数据分散到多个磁盘上存取,这样, ...

  6. Unity c# 状态机的简单入门

    状态机模式在unity中作用是非常大的,可以实现角色的移动和场景的跳转,包括一些动画的播放,在很多unity框架中也是很常见的,发散思维广阔,下面是简单的状态机的实现,有注释 using System ...

  7. 事件捕获 & 事件冒泡

    <body> <div id="div1"> <div id="div2"> <div id="div3&q ...

  8. 细说PHP-5.3.4变量的引用赋值

    变量总是传值赋值.也就是说,当讲一个表达式的值赋予一个变量时,整个原始表达式的值被赋值到目标变量.这意味着,当一个变量的值赋予另个一变量时,改变其中一个变量的值,将不会影响到另一个变量.PHP中提供了 ...

  9. 必知干货:Web前端应用十种常用技术你全都知道吗?

    Web前端应用十种常用技术,随着JS与XHTML的应用普及,越来越多的web界面应用技术出现在网站上,比如我们常见的日历控件,搜索下拉框等,这些web界面应用技术大大的丰富了网站的表现形式,本文将为您 ...

  10. 深入了解JVM(Java虚拟机)

    虚拟机 JRE由Java API和JVM组成,JVM通过类加载器(Class Loader)加类Java应用,并通过Java API进行执行. 虚拟机(VM: Virtual Machine)是通过软 ...