Grid Convergence Index-- Post Processing in CFD
t
Grid Convergence Index
Table of Contents
1 Grid/mesh independence GCI
keywords: Richardson's extrapolation, Grid convergence index a summary of Richardson's extrapolation is here
requirement: GCI < 5%
a summary of GCI from nasa web , local downloaded file is here ( print version is in BEM file folder)
1.1 Richardson extrapolation
1.2 grid refinement ratio
- Hexa mesh –>> grid refinement ratio
- double nodes along each coordinates (x, y,z)
- Tetra mesh –>> effective grid refinement ratio
Definitions:
\[ r_{ij} = h_i/h_j \]
- r: grid refinement ratio,
- h: grid spacing
- effective grid refinement ratio
For tetra mesh, the effective grid refinement ratio is defined as:
\begin{equation}
r_e =( \frac{N_1}{N_2})
^{1/D}
\end{equation}Where \( N \) is the total number of grid point and \( D \) is the dimension of the flow domain.
1.3 Example of Grid convergence study
The example is from here,
The Fortran 90 program verify.f90 was written to carry out the calculations associated with a grid convergence study involving 3 or more grids
The program is compiled on a unix system through the commands:
f90 verify.f90 -o verify
It reads in an ASCII file (prD.do
) through the standard input unit (5) that contains a list of pairs of grid size and value of the observed quantity f.
input data format:
1.0 0.97050 2.0 0.96854 4.0 0.96178
verify < prD.do > prD.out
It assumes the values from the finest grid are listed first. The output is then written to the standard output unit (6) prD.out
.
The output from the of {\tt verify} for the results of Appendix A are:
#+BEGINEXAMPLE
— VERIFY: Performs verification calculations —
Number of data sets read = 3
Grid Size Quantity
1.000000 0.970500
2.000000 0.968540
4.000000 0.961780
Order of convergence using first three finest grid
and assuming constant grid refinement (Eqn. 5.10.6.1)
Order of Convergence, p = 1.78618479
Richardson Extrapolation: Use above order of convergence
and first and second finest grids (Eqn. 5.4.1)
Estimate to zero grid value, fexact = 0.971300304
Grid Convergence Index on fine grids. Uses p from above.
Factor of Safety = 1.25
Grid Refinement
Step Ratio, r GCI(%)
1 2 2.000000 0.103080
2 3 2.000000 0.356244
Checking for asymptotic range using Eqn. 5.10.5.2.
A ratio of 1.0 indicates asymptotic range.
Grid Range Ratio
12 23 0.997980
— End of VERIFY —
#+END _EXAMPLE
1.4 calculation steps
- Complete at least 3 simulations (Coarse, medium, fine) with a constant refinement ratio, r, between them (in our example we use r=2)
- Choose a parameter indicative of grid convergence. In most cases, this should be the parameter you are studying. ie if you are studying drag, you would use drag.
- Calculate the order of convergence, p, using:
\begin{equation}
p=ln(\frac{f_3 - f_2}{f_2- f_1}) / \ln (r)
\end{equation}
where \( f_i \) is the solution at different meshes, f1 is fine grid, \( r \) is grid refinement ratio.
- Perform a Richardson extrapolation to predict the value at h=0
\begin{equation}
f_e = f_1 + \frac{f_1 -f_2 }{r^p - 1}
\end{equation}
fe, exact numerical value ( continuum value at zero grid spacing)
- Calculate grid convergence index (GCI) for the medium and fine refinement levels
\begin{equation}
GCI_{fine} = \frac{F_s \vert \epsilon \vert }{r^p - 1}
\end{equation}
where \( F_s \) is a safety factor. the recommended value is 3 for two grids comparisons and 1.25 for three or more grids comparisons.
- Ensure that grids are in the asymptotic range of convergence by checking:
\frac{GCI2,3}{rp × GCI1,2} \approxeq 1
1.5 Example of Grid convergence for wing:
1.6 References
Roache, P. J. Perspective: A Method for Uniform Reporting of Grid Refinement Studies, Journal of Fluids Engineering, Vol. 116, 1994; 405-413.
Roache, P. J. Quantification of Uncertainty in Computational Fluid Dynamics, in Annual Review of Fluid Mechanics
Roache, Patrick J. Verification and validation in computational science and engineering. Vol. 895. Albuquerque, NM: Hermosa, 1998.
Grid Convergence Index-- Post Processing in CFD的更多相关文章
- post processing in CFD
post post Table of Contents 1. Post-processing 1.1. Reverse flow 1.1.1. reasons 1.1.2. solutions 1.2 ...
- WPF CheckBox样式 ScrollViewer样式 WrapPanel、StackPanel、Grid布局
本节讲述布局,顺带加点样式给大家看看~单纯学布局,肯定是枯燥的~哈哈 那如上界面,该如何设计呢? 1.一些布局元素经常用到.Grid StackPanel Canvas WrapPanel等.如上这种 ...
- Ext.GridPanel 用法总结(一)—— Grid基本用法
Ext.GridPanel 用法总结(一)—— Grid基本用法 摘自:http://www.cnblogs.com/luluping/archive/2009/08/01/1536645.html ...
- WPF Grid布局
本节讲述布局,顺带加点样式给大家看看~单纯学布局,肯定是枯燥的~哈哈 那如上界面,该如何设计呢? 1.一些布局元素经常用到.Grid StackPanel Canvas WrapPanel等.如上这种 ...
- LigerUi中表(Grid)控件的相关属性笔记
http://blog.csdn.net/dxnn520/article/details/8216560 // ========================================= [每 ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- ArcGIS空间分析工具
1. 3D分析 1.1. 3D Features toolset 工具 工具 描述 3D Features toolset (3D 要素工具集) Add Z Information 添加 Z 信息 添 ...
- 【转载】XGBoost调参
General Parameters: Guide the overall functioning Booster Parameters: Guide the individual booster ( ...
- xgboost调参
The overall parameters have been divided into 3 categories by XGBoost authors: General Parameters: G ...
随机推荐
- maven pom 详细配置
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- 17_activity任务栈和启动模式
夜神安卓模拟器. 如果从第一个页面开启另外一个页面,只要不去调finish()方法咱们上一个页面它是不会退出的,它会留在底下.留在底下的话它设计了这样一个模式就是为了维护一个比较好的用户体验,你的仪器 ...
- 给网站添加免费Https SSL证书
基于阿里云的云盾证书服务,系统是centos6.8,web服务器是nginx1.8.0,简单记录下踩坑情况. 申请证书 登录阿里云控制台→安全(云盾)→证书服务→购买证书(https://common ...
- E20171106-hm
pulldown adj. 折叠式的; pulldown menu 下拉菜单
- crosswalk 初步使用
这里简单的说下 crossWalk 的配置; 我在学习 crosswalk 的时候,看到一篇博客,他所记录的已经是很完整的教程了: 点击查看 本文就根据该博客和官网说明,进行部分修改,补充; 首先 c ...
- ----堆栈 STL 函数库 ----有待补充
#include<cstdio> #include<string> #include<vector> #include<iostream> using ...
- 数据据操作 tp5
数据库操作-DB类 学习手册 数据库配置 注意1:在TP里面,可以在模块下面单独的建立一个database.php配置文件,代表这个模块就使用配置的这个数据库 注意2:我们可以在config.php里 ...
- ACM_蛇形矩阵
蛇行矩阵 Time Limit: 4000/2000ms (Java/Others) Problem Description: 蛇形矩阵是由1开始的自然数依次排列成的一个矩阵上三角形. Input: ...
- Shape Drawable Resources
1,示例 它们的代码如下: shape_oval.xml <?xml version="1.0" encoding="utf-8"?> <sh ...
- ActiveMQ应用
一. 概述与介绍 ActiveMQ 是Apache出品,最流行的.功能强大的即时通讯和集成模式的开源服务器.ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provide ...