Trade

Time Limit: 1000ms
Memory Limit: 32768KB

This problem will be judged on HDU. Original ID: 3401
64-bit integer IO format: %I64d      Java class name: Main

 
Recently, lxhgww is addicted to stock, he finds some regular patterns after a few days' study.
He forecasts the next T days' stock market. On the i'th day, you can buy one stock with the price APi or sell one stock to get BPi. 
There are some other limits, one can buy at most ASi stocks on the i'th day and at most sell BSi stocks.
Two trading days should have a interval of more than W days. That is to say, suppose you traded (any buy or sell stocks is regarded as a trade)on the i'th day, the next trading day must be on the (i+W+1)th day or later.
What's more, one can own no more than MaxP stocks at any time.

Before the first day, lxhgww already has infinitely money but no stocks, of course he wants to earn as much money as possible from the stock market. So the question comes, how much at most can he earn?

 

Input

The first line is an integer t, the case number.
The first line of each case are three integers T , MaxP , W .
(0 <= W < T <= 2000, 1 <= MaxP <= 2000) .
The next T lines each has four integers APi,BPi,ASi,BSi( 1<=BPi<=APi<=1000,1<=ASi,BSi<=MaxP), which are mentioned above.

 

Output

The most money lxhgww can earn.

 

Sample Input

1
5 2 0
2 1 1 1
2 1 1 1
3 2 1 1
4 3 1 1
5 4 1 1

Sample Output

3

Source

 
解题:单调队列优化dp
 考虑买入
$dp[i][j] = max(dp[i-1][j],dp[i - w - 1][k] + (k - j)\times ap$
如何选择k,发现要维护$dp[i-w-1][k] - (m - k)\times ap$
 
可以根据$dp[i-w-1][k] - (m-k)\times ap + (m - j)\times ap$ 计算出 $dp[i - w - 1][k] + (k - j)\times ap\,k < j$
 #include <bits/stdc++.h>
using namespace std;
const int maxn = ;
const int INF = 0x3f3f3f3f;
int dp[maxn][maxn],q[maxn],p[maxn],hd,tl; int main(){
int kase,ap,bp,as,bs,n,m,w;
scanf("%d",&kase);
while(kase--){
scanf("%d%d%d",&n,&m,&w);
for(int i = ; i <= w + ; ++i){
scanf("%d%d%d%d",&ap,&bp,&as,&bs);
for(int j = ; j <= m; ++j){
dp[i][j] = j <= as?-ap*j:-INF;
if(i > ) dp[i][j] = max(dp[i][j],dp[i-][j]);
}
}
for(int i = w + ; i <= n; ++i){
scanf("%d%d%d%d",&ap,&bp,&as,&bs);
int k = i - w - ;
hd = tl = ;
for(int j = ; j <= m; ++j){
int tmp = dp[k][j] - ap*(m - j);
while(hd < tl && p[tl-] < tmp) --tl;
q[tl] = j;
p[tl++] = tmp;
while(hd < tl && j - q[hd] > as) ++hd;
dp[i][j] = max(dp[i-][j],p[hd] + ap*(m - j));
}
hd = tl = ;
for(int j = m; j >= ; --j){
int tmp = dp[k][j] + bp*j;
while(hd < tl && p[tl-] < tmp) --tl;
q[tl] = j;
p[tl++] = tmp;
while(q[hd] - j > bs) ++hd;
dp[i][j] = max(dp[i][j],p[hd] - bp*j);
}
}
printf("%d\n",dp[n][]);
}
return ;
}

HDU 3401 Trade的更多相关文章

  1. HDU 3401 Trade dp+单调队列优化

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3401 Trade Time Limit: 2000/1000 MS (Java/Others)Mem ...

  2. 【HDU 3401 Trade】 单调队列优化dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3401 题目大意:现在要你去炒股,给你每天的开盘价值,每股买入价值为ap,卖出价值为bp,每天最多买as ...

  3. HDU 3401 Trade(单调队列优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3401 题意:炒股.第i天买入一股的价钱api,卖出一股的价钱bpi,最多买入asi股,最多卖出bsi股 ...

  4. HDU 3401 Trade(斜率优化dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=3401 题意:有一个股市,现在有T天让你炒股,在第i天,买进股票的价格为APi,卖出股票的价格为BPi,同时最多买 ...

  5. 【单调队列优化dp】HDU 3401 Trade

    http://acm.hdu.edu.cn/showproblem.php?pid=3401 [题意] 知道之后n天的股票买卖价格(api,bpi),以及每天股票买卖数量上限(asi,bsi),问他最 ...

  6. hdu 3401 单调队列优化DP

    Trade Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status ...

  7. hdu 3401 单调队列优化+dp

    http://acm.hdu.edu.cn/showproblem.php?pid=3401 Trade Time Limit: 2000/1000 MS (Java/Others)    Memor ...

  8. HDU——1009FatMouse' Trade(贪心+结构体+排序)

    FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. hdu 3401 单调队列优化动态规划

    思路: 动态方程很容易想到dp[i][j]=max(dp[i][j],dp[i-w-1][j-k]-k*ap[i],dp[i-w-1][j+k]+k*bp[i]): dp[i][j]表示第i天拥有j个 ...

随机推荐

  1. bzoj3545

    线段树合并+离线+启发式合并 半年前这道题t成狗... 离线的做法比较好想,按照边的权值排序,询问的权值排序,然后枚举询问不断加边,加到上限后查找第k大值,这里平衡树,权值线段树都可以实现. 那么我们 ...

  2. 特征选择--->卡方选择器

    特征选择(Feature Selection)指的是在特征向量中选择出那些“优秀”的特征,组成新的.更“精简”的特征向量的过程.它在高维数据分析中十分常用,可以剔除掉“冗余”和“无关”的特征,提升学习 ...

  3. astgo 老版本免激活完整安装包带安装命令脚本

    astgo是个国产的老牌经典软交换服务器,主要用来当回拨网络电话服务端,同时也具备群呼.传真等功能! 这个需要安装在centos 5.x 32位系统.带安装脚本,上传到root目录后执行安装脚本即可等 ...

  4. css的一些命名规范

    网页制作中规范使用DIV+CSS命名规则,可以改善优化功效特别是团队合作时候可以提供合作制作效率,具体DIV CSS命名规则CSS命名大全内容篇. 常用DIV+CSS命名大全集合,即CSS命名规则 D ...

  5. codevs3002石子归并3(四边形不等式优化dp)

    3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 ...

  6. [Swift通天遁地]二、表格表单-(3)在表格中嵌套另一个表格并使Cell的高度自适应

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  7. Python多线程、多进程

    1.from  multiprocessing import Process ;  from  threading import Thread 2.进程之间的数据传输 ,一般会使用到pipes, qu ...

  8. 【Codeforces827D/CF827D】Best Edge Weight(最小生成树性质+倍增/树链剖分+线段树)

    题目 Codeforces827D 分析 倍增神题--(感谢T*C神犇给我讲qwq) 这道题需要考虑最小生成树的性质.首先随便求出一棵最小生成树,把树边和非树边分开处理. 首先,对于非树边\((u,v ...

  9. 使用less时的calc()函数问题

    在使用less时写 width:calc(100%-30px); 但在浏览器检查元素的时候总会显示width:70%; 可以在Less中把calc的写法改写成下面这样: width : calc(~& ...

  10. python--9、进程及并发知识

    进程 一个文件的正在执行.运行过程就成为一个进程.执行多个程序,把程序文件都加载到内存,并且多个程序的内存空间隔离--空间上的复用. 遇到IO等待,切CPU到别的程序,提升效率.没有IO,一个程序占用 ...