Intelligence System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1650    Accepted Submission(s): 722

Problem Description
After a day, ALPCs finally complete their ultimate intelligence system, the purpose of it is of course for ACM ... ...


Now, kzc_tc, the head of the Intelligence Department (his code is once 48, but now 0), is sudden obtaining important information from one Intelligence personnel. That relates to the strategic direction and future development of the situation of ALPC. So it
need for emergency notification to all Intelligence personnel, he decides to use the intelligence system (kzc_tc inform one, and the one inform other one or more, and so on. Finally the information is known to all).

We know this is a dangerous work. Each transmission of the information can only be made through a fixed approach, from a fixed person to another fixed, and cannot be exchanged, but between two persons may have more than one way for transferring. Each act of
the transmission cost Ci (1 <= Ci <= 100000), the total cost of the transmission if inform some ones in our ALPC intelligence agency is their costs sum.


Something good, if two people can inform each other, directly or indirectly through someone else, then they belong to the same branch (kzc_tc is in one branch, too!). This case, it’s very easy to inform each other, so that the cost between persons in the same
branch will be ignored. The number of branch in intelligence agency is no more than one hundred.

As a result of the current tensions of ALPC’s funds, kzc_tc now has all relationships in his Intelligence system, and he want to write a program to achieve the minimum cost to ensure that everyone knows this intelligence.

It's really annoying!
 
Input
There are several test cases.

In each case, the first line is an Integer N (0< N <= 50000), the number of the intelligence personnel including kzc_tc. Their code is numbered from 0 to N-1. And then M (0<= M <= 100000), the number of the transmission approach.

The next M lines, each line contains three integers, X, Y and C means person X transfer information to person Y cost C.

 
Output
The minimum total cost for inform everyone.

Believe kzc_tc’s working! There always is a way for him to communicate with all other intelligence personnel.
 
Sample Input
3 3
0 1 100
1 2 50
0 2 100
3 3
0 1 100
1 2 50
2 1 100
2 2
0 1 50
0 1 100
 
Sample Output
150
100
50
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  3069 

pid=3077" target="_blank">3077 

pid=3070" target="_blank">3070 

pid=3071" target="_blank">3071 

pid=3073" target="_blank">3073 

 

题意:n个人m个单向关系。如今要通知全部的人,两个人之间联系有费用,求最小费用,处于同一个联通块的两个人之间通讯不须要花费。

思路:先建图使用Tarjan算法缩点,然后依据题意我们应该求缩点后新图的最小树形图,但是这里不是必需,为什么?细致想一想,首先题意说总是有解,所以最小树形图一定存在。那么我们对于每个点在它的全部入边中选择一个花费最小的入边(入度为零的点除外)那么答案就是每个点的最小花费之和。这样贪心是可行的,由于在这个过程中不会出现环,非常easy想到,假设出现了环那么这个环就又是一个联通块了,但是我们之前已经求出了联通块,保证了新图中没有环。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; const int MAXN = 50010;//点数
const int MAXM = 500010;//边数 struct Edge
{
int to,c,next;
}edge[MAXM]; int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
int Index,top;
int scc;//强联通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强联通分量包括的点的个数,数组编号为1~scc
//num数组不一定须要,结合实际情况 void addedge(int u,int v,int c)
{
edge[tot].to=v;
edge[tot].c=c;
edge[tot].next=head[u];
head[u]=tot++;
} void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=++Index;
Stack[top++]=u;
Instack[u]=true;
for (int i=head[u];i+1;i=edge[i].next)
{
v=edge[i].to;
if (!DFN[v])
{
Tarjan(v);
if (Low[u]>Low[v]) Low[u]=Low[v];
}
else if (Instack[v]&&Low[u]>DFN[v])
Low[u]=DFN[v];
}
if (Low[u]==DFN[u])
{
scc++;
do{
v=Stack[--top];
Instack[v]=false;
Belong[v]=scc;
num[scc]++;
}while (v!=u);
}
} void solve(int N)
{
memset(DFN,0,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(num,0,sizeof(num));
Index=scc=top=0;
for (int i=1;i<=N;i++) //点的编号从1開始
if (!DFN[i])
Tarjan(i);
} int n,m;
int d[MAXN],in[MAXN]; void init()
{
tot=0;
memset(head,-1,sizeof(head));
memset(d,INF,sizeof(d));
memset(in,0,sizeof(in));
} int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/asus1/Desktop/IN.txt","r",stdin);
#endif
int i,j,u,v,c;
while (~sff(n,m))
{
init();
for (i=0;i<m;i++)
{
sfff(u,v,c);
u++;v++;
addedge(u,v,c);
}
solve(n);
int ans=0;
for (u=1;u<=n;u++)
{
for (i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if (Belong[u]!=Belong[v])
in[Belong[v]]++;
}
}
for (u=1;u<=n;u++)
{
for (j=head[u];~j;j=edge[j].next)
{
int v=edge[j].to;
if (Belong[u]!=Belong[v])
d[Belong[v]]=min(d[Belong[v]],edge[j].c);
}
}
for (i=1;i<=scc;i++)
{
if (in[i]==0) continue;
ans+=d[i];
}
pf("%d\n",ans);
}
return 0;
}

Intelligence System (hdu 3072 强联通缩点+贪心)的更多相关文章

  1. Proving Equivalences (hdu 2767 强联通缩点)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. HDU 2767-Proving Equivalences(强联通+缩点)

    题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...

  3. HDU 6170 FFF at Valentine(强联通缩点+拓扑排序)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6165 题意:给你一个无环,无重边的有向图,问你任意两点,是否存在路径使得其中一点能到达另一点 解析:强 ...

  4. POJ 2186 Popular Cows(强联通+缩点)

    Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= ...

  5. [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...

  6. POJ 2762Going from u to v or from v to u?(强联通 + 缩点 + 拓扑排序)

    [题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y-> ...

  7. HDU 5934 强联通分量

    Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  8. hdu 4612 双联通缩点+树形dp

    #pragma comment(linker,"/STACK:102400000,102400000")//总是爆栈加上这个就么么哒了 #include<stdio.h> ...

  9. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

随机推荐

  1. SQL2005,错误 0xc00470fe 数据流任务 产品级别对于 组件“源 - 2009_txt”(1) 而言不足

    今天在将txt文件导入MSSQL2005时,出了这个错误,到网上查了一下资料,说是因为没有安装SQL 2005 SP1的原因,所以我就下载了个. 安装后,再次导入数据,OK 没问题了.http://w ...

  2. python3 UnicodeEncodeError: 'gbk' codec can't encode character '\xa0' in position 30: illegal multibyte sequence

    昨天用用python3写个日志文件,结果报错UnicodeEncodeError: 'gbk' codec can't encode character '\xa0' in position 30: ...

  3. Cognos让指定用户不具有删除内容的权限

    为了方便用户使用Cognos,现在很多对权限要求不够严格的用户就想到了可以让用户实现匿名登陆,即不登陆系统即可实现访问报表,当然这也仅仅是按照客户的需求,我个人认为一个安全性的数据平台还是需要对登陆. ...

  4. Visio 2013 由于形状保护、容器和/或图层属性的设置,无法完全执行此命令

    形状的保护 解决问题:Visio 2013 由于形状保护.容器和/或图层属性的设置,无法完全执行此命令 重要: 本文是由机器翻译的,请参阅免责声明.请在 此处 中查找本文的英文版本以便参考. 禁止对形 ...

  5. 【PHP 】 伪静态 - 3. 伪静态的基本使用

    原理图: 原先浏览器输入的网址会发送到apache服务器,然后apache会调用php模块来处理,最后找到你所想访问的页面; 如果在apahce, httpd.conf文件中开启rewrite机制,则 ...

  6. Ipad也怕冷?!

    今天,说一Ipad充不了电,我想才没买好久,这么快电池就坏了呀.难道买到歪货了? 它的表现是充电线一接上去,电池指示有反应,也有"闪电"标志,就是充不进去电.本来想打客服的,还是先 ...

  7. Android Bundle存储数据类型

    曾经被问到这样一个问题:Bundle能存哪些数据类型,不能存哪些数据类型? 当时那个汗啊,因为,平常使用Bundle,要么使用基本数据类型,要么序列化自定义的Class,那到底能存哪些类型,不能存哪些 ...

  8. java 笔试之在线模拟

    网站地址: https://www.nowcoder.com

  9. PyQt5——安装Eric6

    Eric6是PyQt编程最理想的IDE.windows版的安装很简单.下面的安装也是在windows上进行的.linux版的我安装有点问题,有时间再折腾. 下载: Eric6官网:http://eri ...

  10. Mac Oracle SqlDeveloper 快捷输入

    用惯了 plsql 的快捷输入,换了 Mac Oracle SqlDeveloper反倒是找不到了,翻出去找了几次终于找到 SqlDeveloper -- preferences -- 数据库(dat ...